
We’re all here because we love Python. And we all know what’s great about Python: 
code is read more often than it’s written, so Guido built a language optimized to be 
easy to read.

1



Like this. Perfectly clear, readable, understandable Python!

OK, so this is cheating a bit, but this really *is* Python. At least, it’s the way Python 
works. To understand that, though, we need to understand a bit about how 
computers work.

2



I love this tweet, because it is true and therefore beautiful.

3



Computers work because a CPU is a bunch of circuits, inscribed on a wafer of silicon, 
set up so that if you send certain patterns of electricity in you get certain other 
patterns of electricity out. We call those “instructions” for the CPU, and assign 
meanings to the patterns, like “add these two numbers”. Programming languages 
need a way to turn the source code you write into instructions for the CPU.

4



Some do this as a separate step from running the program; we call those compiled 
languages. Others do it while the program is running, and we call those interpreted 
languages.

But some languages actually do something in between; they compile to instructions 
for a CPU that doesn’t physically exist, and then implement that CPU in software, 
translating between the instructions for the virtual machine and instructions for the 
physical wafer of silicon sitting inside the computer. We call that intermediate set of 
instructions… bytecode! Java and all the JVM languages do this. All the .NET 
languages, like C#, do this. And Python does this.

5



Here’s a function that calculates Fibonacci numbers. How does Python execute this?

6



When you run a Python program, it gets compiled to bytecode. When you import a 
Python module, it also gets compiled to bytecode, and Python stores the result in a 
file with a ‘.pyc’ extension. In Python 2 you used to see them alongside the source 
files, but in Python 3 they live in a __pycache__ directory.

7



Check out this attribute on the Fibonacci function: it’s a Python code object. It 
contains everything Python needs to be able to execute the function. And by poking 
at its attributes, we can see how Python executes the function.

8



co_consts is a tuple of all the constants (literals) used inside the function body.

Notice that None is in here despite not occurring in the function body. That’s 
because, if no explicit return statement is ever reached (and Python can’t figure out 
in advance if it will!), a Python function returns None. So it’s present just in case it’s 
needed.

9



co_varnames is another tuple, containing the names of all the local variables of the 
function.

10



Finally, co_names is a tuple containing any nonlocal names used in the function body. 
The Fibonacci function didn’t use any of those.

11



And this is the compiled bytecode of the Fibonacci function, as a Python bytes object. 
Ignore the fact that some of the bytes are ASCII printable. This is not a string!

12



The first byte printed as a pipe character. We can ask Python for its decimal byte 
value.

13



And then we can go to the dis module in the standard library, and ask Python what 
bytecode operation has decimal value 124.

14



Remember that first slide? This was the first line in it. The second byte of this 
function’s bytecode is a 0. The first (zeroth) item in the co_varnames tuple was the 
local variable ‘n’. LOAD_FAST tells Python’s virtual machine to load the value 
associated with the first name in co_varnames, and push it on the top of the 
evaluation stack.

15



Now that we’ve seen see how to access the bytecode and make sense of it manually, 
here’s the shortcut to seeing human-readable bytecode in a Python interpreter. It 
prints out the contents of the first slide.

16



The output contains the line number each instruction came from. There’s also 
another number in front of each instruction; that’s the offset, in bytes, from the start 
of the function’s bytecode to that instruction. In Python 3.6, every instruction takes 
two bytes (instruction code plus argument, and the argument is ignored for 
instructions that don’t take arguments), so the offset is an even number. Previously, 
the offset could be odd if instructions that didn’t take arguments were involved.

Right-pointing angle brackets indicate instructions which are jump targets (some 
other instruction, like an if statement or the continuation of a loop,  might say to go 
here next).

17



The Python VM’s fundamental data structure is a stack, which supports two 
operations: push (put an item on “top”) and pop (remove whatever item was on 
“top” and return its value). The interpreter maintains a call stack with one frame 
(item) for each function call. Whenever a function returns, its frame is popped off the 
top of the call stack, and the return value is pushed on the evaluation stack of the 
calling frame.

18



Within each call-stack frame, Python sets up a frame-local evaluation stack and a 
frame-local block stack for execution of the function.

The block stack is necessary since loops and other blocks can be nested, and control 
flow keywords can break out of them; Python needs to know *which* block is being 
broken out of.

19



Here’s an example of a function call, calculating the 8th Fibonacci number. It turns into 
three bytecode operations

20



The first, LOAD_GLOBAL, looks up a name from the global (or nonlocal, if we’re in a 
function body) namespace, and pushes it on top of the stack. In this case, it’s the ‘fib’ 
function.

21



Next, LOAD_CONST loads the literal integer 8 and pushes it on top of the stack.

22



Finally, CALL_FUNCTION carries out the function call. The argument 1 indicates that 

there’s 1 positional argument involved. Python will count that many items down on 

the stack to find the function to call, popping each of them. Then it pops the function, 

executes the body of the function in a new call-stack frame, and pushes the return 

value to the top of the stack. There are other bytecode instructions for calling a 

function with keyword arguments, and calling a function by using iterable- and 

mapping-unpacking constructs for arguments.

23



The documentation for the dis module includes a complete list of CPython’s bytecode 
instructions, along with what each one does and what argument it takes.

24



25



26



If you’ve ever used FORTH or Factor or another stack-oriented language, the bytecode 
instructions and their effects may be a bit easier for you to understand. If not, this is a 
cool and somewhat unusual way to think about programming, and is worth learning 
just for that.

It also has more practical purposes. People often talk about C as “portable assembly”, 
and how easy it is to reason about what a given piece of C code will do – bytecode is 
the “assembly” of Python, and studying how Python transforms your source code into 
bytecode will give you insights into what any given piece of Python code will do.

And, of course, we can learn things about how Python itself works, and reason about 
performance.

27



Here are a couple functions which each calculate the number of seconds in a week. 
Can you guess which one is faster?

28



Reading bytecode can show you interesting optimizations. In this case, fast_week is 
only two bytecode instructions because it only used arithmetic on constant values, so 
Python did the arithmetic at compile time. But slow_week() is four instructions 
because it involves a variable, and Python can’t statically optimize that away.

This isn’t the only sneaky optimization in Python. For example, depending on how 
you compile your Python, there are some tricks that try to speed up execution by 
knowing that certain bytecode instructions tend to follow each other; combined with 
the processor’s branch prediction, this allows drastically reduced overhead when 
dispatching certain pairs of instructions that often occur together. This would have 
sped up the Fibonacci function from earlier, by predicting a POP_JUMP_IF_FALSE as a 
likely followup to a COMPARE_OP.

29



Here’s a common type of Python performance question: why is the dictionary literal 
syntax faster than the dict() function? The answer, once again, is in the bytecode.

30



Here’s a function that calculates and returns a list of the first ten perfect squares. The 
body of its loop is 15 bytecode instructions.

31



Here’s a slightly different version, using range() and a for loop instead of a while loop 
with explicit counter. Its loop body is 9 instructions!

32



Finally, here’s a version using a list comprehension. The entire function body is 9 
instructions! The generated code object for the list comprehension is also 9 
instructions; this makes a total of 18 instructions (compared to 20 total for the range 
+ loop). We do have to build and execute a function here, though, so it’s not a pure 
gain, and that’s an important lesson: fewer instructions doesn’t always mean faster, 
especially if there’s a function call involved!

33



So let’s talk about some guidelines for reading bytecode and reasoning about 
performance.

This is the single most important rule of performance in Python. Any time you can 
avoid executing pure-Python code, you should.

34



This isn’t necessarily obvious from the bytecode, but the implementations of these 
instructions have significantly different performance characteristics. A lot of this has 
to do with the complexity of the lookup; nonlocal names may have to search in 
multiple namespaces before they find what they’re looking for.

35



Any loop or block involves multiple instructions to enter and exit, instructions to set 
up any names local to the block, and pushing/popping the block stack.

36



This is part of why people often recommend aliasing an attribute of a nonlocal name 
in the function body. These operations can also be expensive, especially if you’re 
doing them multiple levels deep, or once each time through a loop.

37



The actual Python bytecode interpreter lives in the file ceval.c; the execution of 
bytecode instructions is handled by a large switch() statement starting around the 
middle of that file.

38



39


