
SECURE WEB
DEVELOPMENT

with django

James Bennett · DjangoCon US · July 17th 2016

THERE’S NO SUCH THING
AS “SECURE”

Let’s just get that out of the way right now. It’s
an important enough idea that this slide is YELLING

about it in ALL CAPS.

OK, SMART GUY, SO
WHAT’S THIS TALK

ABOUT, THEN?
And why is it still YELLING?

➤ Useful ways to think and talk about security, and bring it into
your development process

➤ Security issues in web applications

➤ How to deal with those issues (and how Django and Python
will help you)

➤ Django’s security history, and learning from our mistakes

LET’S TALK ABOUT
TALKING ABOUT

SECURITY
So meta.

SECURITY IS IMPORTANT
'); DROP TABLE slides;--

SECURITY IS NOT AN
ABSOLUTE

Only a Sith deals in absolutes. And their bases keep
getting blown up. You don’t want your base blown
up. So don’t be like the Sith, is what I’m saying.

SECURITY IS ABOUT
TRADEOFFS

The sun becoming a red giant and consuming the
world is a very effective denial-of-service attack, but

you probably shouldn’t worry about it.
Probably.

SECURITY ISN’T ONLY
FOR EXPERTS

What do they know, anyway?

SECURITY CAN’T BE AN
AFTERTHOUGHT

We’ll deal with that next quarter. Wait, why is
our bank account suddenly empty?

THE OWASP TOP TEN
O wasp, where art thou?

A list of the top ten security issues in web
applications:

https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

INJECTION ATTACKS

Injection attacks occur when an application
inappropriately trusts data from an
untrustworthy source.

username = request.GET['username']

my_query = """

SELECT *

FROM users

WHERE username = '%s'

""" % username

result = db_cursor.execute(my_query)

HI! MY NAME IS
''; UPDATE users SET

is_superuser = true WHERE
username = 'haxor'; --

This example is a SQL injection attack. SQL
injection vulnerabilities are common any
time queries are constructed with user input
as a parameter.

OTHER FORMS OF INJECTION

➤ Mail header injection attacks: an email-sending form can be
tricked into sending to unintended recipients

➤ Command injection attacks: an application which triggers shell
commands with user input as a parameter can be tricked into
executing other, arbitrary shell commands

➤ XML injection attacks: an XML processor is tricked into
handling unsafe input (perhaps containing scripts, entity
definitions which expand to perform network requests or
reveal contents of system files, etc.)

➤ Almost anything which takes user input and does something
with that input

AUTHENTICATION AND
SESSION MANAGEMENT

Authentication and sessions are extremely
hard to get right.

JUST A FEW OF THE MANY WAYS IT CAN GO WRONG

➤ Credentials (such as passwords) are insufficiently protected
on either the server or the client side

➤ Credentials are transmitted over unencrypted connections

➤ Credentials can be reset/overwritten too easily

➤ Identifiers are exposed to public view (i.e., session ID in a
GET parameter)

➤ Session hijacking/fixation: attacker can get a valid session ID
and use it or force it to be reused

CROSS-SITE SCRIPTING
But my friends call me “XSS”.

An application constructs HTML by
concatenating or interpolating strings that
include user input (either the current user,
or a previous user’s stored input), allowing
unsafe content — such as JavaScript code —
to wind up in the output.

name = request.GET['name']

my_html = '<p>Hello, there, %s</p>' % name

HI! MY NAME IS
<script type="text/javascript">

alert("Oops");</script>

INSECURE DIRECT
OBJECT REFERENCE

http://example.com/accounts/
manage/1

Hmm…

Wonder what happens at
http://example.com/accounts/
manage/2

or
http://example.com/accounts/
manage/528

http://example.com/accounts/manage/1
http://example.com/accounts/manage/2
http://example.com/accounts/manage/528

This issue is more subtle, because it’s
usually exploited in combination with
something else (such as lack of appropriate
access controls), though by itself it can leak
information you might not have wanted to
leak.

It’s also tricky to point out and fix, since the
obvious “solution” is to introduce security
through obscurity (for example, through
randomly-generated instead of sequential
identifiers).

MISCONFIGURATION
The default password is “admin”. Remember to

change it after you log in the first time!

PLACES TO CHECK ON

➤ Default accounts/credentials or authentication bypasses

➤ Debugging modes for all pieces of software (not just Django)

➤ Security-related or security-relevant settings for all software
you use

➤ Default error-handling behaviors — stack traces are gold
mines of information about your application

SENSITIVE DATA
EXPOSURE

Unsalted MD5 was good enough for our
ancestors, and it’s good enough for me!

There’s subtlety here as well. Applications
can leak data in unexpected ways.

THINGS THAT CAN LEAK

➤ Anything which transmits or stores information, not just the
database

➤ Logging systems: do they store in plain text? ship to a third-
party log services?

➤ Error handlers: do they alert through a third-party service? is
a secure connection used?

➤ Credentials: do you require authentication to occur over
secure connections?

MISSING FUNCTION-
LEVEL ACCESS CONTROL

I wonder what happens if I click this button?

Every function which can create, delete or
modify data should be appropriately
protected by authentication or authorization
controls

CROSS-SITE REQUEST
FORGERY

That’s “CSRF” to you.

In a CSRF attack, a legitimate user of your
application is tricked or deceived into
submitting a request to your application.

XSS vulnerabilities can provide one avenue
to create CSRF vulnerabilities, but are not
the only method.

COMPONENTS WITH
KNOWN

VULNERABILITIES
Version 0.0.1-pre-alpha is probably safe

enough for production, right?

Keeping track of components and libraries
you use, and issues in them, is difficult. But
it’s also necessary: an issue anywhere in your
stack can expose everything.

UNVALIDATED
REDIRECTS AND

FORWARDS

http://example.com/login/?next=/profile/

I wonder what happens if I pass in
next=http://evilsite.com/ …

http://example.com/login/?next=/profile/
http://evilsite.com/

Unfortunately, validating redirection targets
is a hard problem.

SO WHAT CAN WE DO
ABOUT IT?

“Give up and become a potato farmer” is looking
more tempting every day.

INJECTION ATTACKS

The simplest and most reliable way to
prevent SQL injection is to use
parameterized queries.

name = request.GET['name']

my_query = """

SELECT *

FROM users

WHERE name = %s

"""

result = db_cursor.execute(

 my_query, (name,)

)

Django’s ORM uses parameterized queries
by default, so you don’t need to worry about
this most of the time.

You do need to worry about it any time
you’re supplying raw SQL or bits of SQL to
Django’s ORM, though.

The extra() and raw() methods, and the
RawSQL query expression, all take a params
argument. Use it.

OTHER INJECTION ATTACKS

➤ Mail header injection: reject any input value with a newline in
it. Django’s mail-sending functions do this for you
automatically, raising BadHeaderError

➤ Command injection: use Python’s subprocess module and
never invoke anything with shell=True

➤ XML injection: use the defusedxml Python library for XML
handling

AUTHENTICATION AND
SESSION MANAGEMENT

Django’s authentication framework does its
best to protect you, but there’s some extra
work required to cover your bases.

BASIC STEPS FOR MORE SECURE AUTH AND SESSIONS

➤ Serve your site over a secure connection

➤ Turn on HSTS to be sure

➤ Mark important cookies secure and inaccessible to JavaScript

➤ Never expose a session ID

➤ Use password validation (new in Django 1.9) to avoid easily-
guessed credentials

CROSS-SITE SCRIPTING

By default Django applies HTML escaping to
the output of all template variables.

But that’s just a start: Django won’t generate
all your HTML. Audit everything else,
including JavaScript, for unsafe uses
(especially of innerHTML — or better yet,
don’t use it!)

Also, make sure not to use the escapejs
template filter for security — all it does is
perform backslash escaping to make strings
be syntactically valid for JavaScript. It does not
perform any type of sanitization.

INSECURE DIRECT
OBJECT REFERENCES

Whenever possible, avoid exposing internal
object IDs publicly; instead prefer natural
keys. Django’s URL routing makes this easy,
since you decide which parameters to put in
your URLs.

Bad:
http://example.com/users/23/

Good:
http://example.com/users/janedoe/

http://example.com/users/23/
http://example.com/users/janedoe/

SECURITY
MISCONFIGURATION

Use Django’s system check framework and
run the deployment check before moving to
production:
python manage.py check --deploy

You can also run only the security-related
checks:
python manage.py check --tag security

This only checks your Django applications
and configuration. For other components of
your stack you’ll need to read documentation
to familiarize yourself with best practices
and secure configuration.

SENSITIVE DATA
EXPOSURE

Much of the advice here is similar to auth
and sessions: use secure connections, etc.

But that is, as always, just a start.

Django also provides decorators to let you
specify security-sensitive request parameters
and view-local variables. If you do, they’ll be
scrubbed from logging and error reporting
handlers within Django.

They live in
django.views.decorators.debug:
➤ sensitive_post_parameters

➤ sensitive_variables

from django.views.decorators.debug import \

 sensitive_variables

@sensitive_post_parameters('username', 'password')

def my_login_function(username, password):

 # If an error occurs in this function, the

 # username and password variables will be

 # scrubbed from any reported traceback.

Any tracebacks generated by Django will also
scrub the values of any settings whose
names match common sensitive patterns
(such as ‘API’, ‘SECRET’, ‘PASS’, etc.).

You should avoid ever receiving sensitive
values in GET parameters; Django can’t help
you with this, because they’ll be logged
automatically by your web server and
possibly other parts of your stack.

MISSING FUNCTION-
LEVEL ACCESS CONTROL

Django’s authentication system provides the
tools to let you control access down to the
view level.

For function-based views, decorators live in
django.contrib.auth.decorators:
➤ login_required

➤ permission_required

➤ user_passes_test

For class-based views, mixins live in
django.contrib.auth.mixins:
➤ LoginRequiredMixin

➤ PermissionRequiredMixin

➤ UserPassesTestMixin

You can also control which HTTP methods
are permitted on a view. Decorators (for
function-based views) live in
django.views.decorators.http:
➤ require_GET

➤ require_POST

➤ require_http_methods

➤ require_safe

On class-based views, you can set the
attribute http_method_names to a list of
accepted HTTP methods.

from django.views.generic import View

This view only allows POST and PUT

class PostPutView(View):

 http_method_names = ['POST', 'PUT']

For more fine-grained control you can build
logic into your view (for example, to have
per-object control).

On generic class-based views you can often
override the method which performs the
database query and do the checks there.

If you raise
django.core.exceptions.PermissionDenied
anywhere in your code, Django will convert
it to an HTTP 403 Forbidden response.

CROSS-SITE REQUEST
FORGERY

CSRF protection is on by default in Django.
Don’t disable it, but be aware of what it
requires you to do.

Using Django templates, always put
{% csrf_token %} just after the opening
<form> tag for anything which will use an
“unsafe” HTTP method like POST.

Using Jinja with Django’s built-in Jinja
template backend, use {{ csrf_input }}
there instead.

For AJAX form submissions the instructions
are slightly more involved:
https://docs.djangoproject.com/en/
1.9/ref/csrf/#ajax

https://docs.djangoproject.com/en/1.9/ref/csrf/#ajax

COMPONENTS WITH
KNOWN

VULNERABILITIES

Django can’t directly help you with this,
because Django’s code has no knowledge of
these types of security issues. So you’ll have
to do this manually.

USEFUL RESOURCES

➤ Subscribe to the django-announce mailing list to get
announcements of new Django releases (including security
releases and advisories).

➤ Regularly run your operating system’s package/software
updater.

➤ Use a service like https://requires.io/ (free for open-
source projects) to track and be notified of the status of your
Python dependencies.

https://requires.io/

UNVALIDATED
REDIRECTS AND

FORWARDS

If at all possible, don’t rely on a user-
controllable parameter to determine where
to redirect.

If you do need to rely on such a parameter,
validate it before you issue a redirect.

django.utils.http.is_safe_url() can
help you with this, but it isn’t perfect —
validating URLs is notoriously difficult.

WE SOLVED SECURITY!
YAY!

We did solve it, right?

…right?

THE OWASP TOP TEN IS
JUST THE BEGINNING

YOU CAN LEAD A USER
TO A SECURE

CONNECTION…
And you can make them use it.

#Add
#django.middleware.security.SecurityMiddleware
#to your MIDDLEWARE_CLASSES setting.

#Then this:

SECURE_SSL_REDIRECT = True

But there’s still a risk: the initial connection
will be done over HTTP before the redirect
to HTTPS happens. Can you close that off,
too?

HTTP Strict Transport Security (HSTS) uses a
header to tell browsers to always force a
secure (HTTPS) connection to your site.

It does require that everything on your site —
including all included images, stylesheets,
JavaScript, etc. — be served over HTTPS. But
you want to do that anyway, right?

More SecurityMiddleware fun!

SECURE_HSTS_SECONDS = 31536000

SECURE_HSTS_INCLUDE_SUBDOMAINS = True

MY CONTENT SMELLS
BAD

Why do you keep sniffing it?

Content sniffing is an unfortunate “feature”
where web browsers read the first part of
your response to try to guess its content type
rather than follow the Content-Type header
you sent.

This can result in files being interpreted as
the wrong type — including perhaps as
executable code.

Still got SecurityMiddleware enabled? Good:

SECURE_CONTENT_TYPE_NOSNIFF = True

WHO STOLE THE COOKIE
FROM THE COOKIE JAR?

It definitely wasn’t Cookie Monster.

Cookies are useful, but:
➤ JavaScript can access them
➤ They get sent on both secure and insecure

requests

This can lead to cookie values being exposed
to people with less-than-good intentions.

Make CSRF token and session cookie only get

sent over secure connections:

CSRF_COOKIE_SECURE = True

SESSION_COOKIE_SECURE = True

Make CSRF token and session cookie use the

HttpOnly flag, denying JavaScript access:

CSRF_COOKIE_HTTPONLY = True

SESSION_COOKIE_HTTPONLY = True

Just remember HttpOnly is a “better than

nothing” approach, not a full solution to

protecting cookie values.

I WAS FRAMED!
It probably still wasn’t Cookie Monster.

Clickjacking attacks deceive a user into
making a legitimate request, by overlaying a
hidden frame — with your site’s form
controls — on something the user is
tempted into clicking.

django.middleware.clickjacking.XFrameOptionsMiddleware

in your MIDDLEWARE_CLASSES

X_FRAME_OPTIONS = 'DENY'

or to allow your own site to frame itself:

X_FRAME_OPTIONS = 'SAMEORIGIN'

django.views.decorators.clickjacking also contains

decorators to let you do this on a per-view basis:

xframe_options_exempt, xframe_options_deny, and

xframe_options_sameorigin

WHERE DID THIS
JAVASCRIPT COME

FROM?
Cookie Monster wanted for questioning.

Autoescaping HTML is a good start for
preventing cross-site scripting. But there are
still ways to sneak JavaScript into
unexpected places.

SecurityMiddleware again!

SECURE_BROWSER_XSS_FILTER = True

Though like HttpOnly on cookies, this is a

“probably better than nothing” rather than a

“slam dunk win”.

But what you really want is a way to allow
only the scripts you personally put on your
site. How can you do that?

Content Security Policy (CSP) is a browser-
supported HTTP header specifying valid
sources for JavaScript, stylesheets, images
and more.

Browsers will refuse to load/execute any
resource not permitted by a CSP header,
including inline JavaScript if the policy
disallows it.

CSP also allows you to specify a callback
URL where supporting browsers will POST a
summary of any violations of your policy
they encounter while rendering your site.

django-csp is a third-party package maintained
by Mozilla, providing configurable CSP support for
Django:
http://django-csp.readthedocs.io/

http://django-csp.readthedocs.io/

STAY IN THE SANDBOX
And don’t kick over anyone’s sand castle.

JavaScript has a same-origin sandbox: by
default, it can only issue requests to the
domain the JavaScript was served from.

This can be overridden using Cross-Origin
Resource Sharing (CORS), which uses an
HTTP header to specify an access-control
policy.

Flash and Silverlight also have a same-origin
sandbox, and also let you override it, but
they use XML policy files instead of HTTP
headers.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE cross-domain-policy

 SYSTEM 'http://www.adobe.com/xml/dtds/
cross-domain-policy.dtd'>

<cross-domain-policy>

 <site-control permitted-cross-domain-
policies="none"/>

</cross-domain-policy>

A Flash cross-domain policy needs to be
served from the URL /crossdomain.xml on
the domain (but can specify additional policy
files found elsewhere).

Silverlight uses a file called
clientaccesspolicy.xml with a different
format, but also understands and looks for
Flash’s crossdomain.xml file and format.

django-flashpolicies is a package providing
support for generating and serving cross-domain
policy files in Django:
http://django-
flashpolicies.readthedocs.io/

http://django-flashpolicies.readthedocs.io/

A BRIEF HISTORY OF
DJANGO AND SECURITY

Spoiler alert: we got some things wrong.

2007:

Pre-1.0 Django
Issues reported haphazardly,
fixed in SVN trunk. Advice
sometimes to download and
overwrite files with new versions.

2008

Django 1.0 released
Template system now HTML-
escapes variable output.

2010

Django 1.2 released
Django now includes a CSRF
prevention tool in core.

2012

Django 1.4 released
Better password storage, vetted
crypto, signed cookies,
clickjacking protection, error
scrubbing, and a formal security
process.

2013

Django 1.5 and 1.6 released
Host header hardening, more
password-storage improvements.

2014

Django 1.7 released
System check framework
introduced to verify configuration
automatically.

Early 2015

Django 1.8 released
System check framework now has
a security-oriented “deployment
check”, security middleware
introduced.

Late 2015

Django 1.9 released
Password validation framework,
new permission mixins for class-
based views.

WE FALL DOWN.

August 16th, 2006: Django’s first vulnerability

CVE-2007-0404
Filename validation issue in
translation framework

March 1st, 2016: Django’s latest vulnerability

CVE-2016-2513
Username enumeration through
timing difference on password
hasher work factor upgrade

Between those came fifty-five
other security issues and
advisories.

Here are all of them:
https://docs.djangoproject.com/
en/dev/releases/security/

https://docs.djangoproject.com/en/dev/releases/security/

WE FALL DOWN A LOT.

AND WE GET BACK UP.

Django’s full security policy is
always available online at:
https://www.djangoproject.com/
security/

https://www.djangoproject.com/security/

The primary goals of this process
are to protect Django’s users by
encouraging responsible
reporting and disclosure of
security issues.

Django’s security process begins
with an email address:
security@djangoproject.com

If you think you’ve found a
security issue, please email that
address.

mailto:security@djangoproject.com

Once an issue has been reported,
Django’s security team will verify
the issue with the reporter, then
begin tracking it in a private issue
repository.

Once a patch has been developed,
a CVE identifier is requested for
the issue, and our security-
prenotification list receives the
issue description and patch.

One week after pre-notification,
we go public, issuing new
releases of Django and publishing
a full description of the problem
and direct links to the commit(s)
that fixed it.

And then we wait for the next
one.

PATTERNS IN SECURITY
ISSUES

It’s déjà vu all over again!

“Parsing the Accept-Language header
is expensive to do on every request.
Let’s do it once per unique value and
cache the results!

-The Django team, circa 2007

“Let’s use a one-time base36 token to
do password resets!

-The Django team, circa 2010

“Formsets need to be able to
dynamically grow the number of
forms they use!

-The Django team, circa 2013

“Restrictions on password length are
dumb! Everybody knows long
passwords are better!

-The Django team, circa 2013

CVE-2007-5712
Denial-of-service via arbitrarily-
large Accept-Language header

CVE-2010-4535
Denial-of-service in password-
reset mechanism

CVE-2013-0306
Denial-of-service via formset
max_num bypass

CVE-2013-1443
Denial-of-service via large
passwords

Python doesn’t have some of the
vulnerabilities common in other
languages, but you can still DoS
yourself if you’re not careful.

STOP DOS’ING YOURSELF!

➤ Sanity-check all your inputs for length before you start
processing them.

➤ Yes, even passwords (where appropriate)!

➤ Configure your web server to cap the length of HTTP headers
and request bodies

“URLField should really check
whether the URL exists before
accepting the value!

-The Django team, circa 2006

“URLField should accept anything that
matches the format of a valid URL!

-The Django team, circa 2006

“EmailField should accept anything
that matches the format of a valid
email address!

-The Django team, circa 2006

“Checking for corrupt images is easy,
we can just use PIL/Pillow’s routines
for that!

-The Django team, circa 2012

“Most image formats store metadata in
a header, let’s find it by only reading a
few bytes at a time!

-The Django team, circa 2012

CVE-2011-4137
Denial-of-service via
URLField.verify_exists

CVE-2009-3965
Denial-of-service via pathological
regular-expression performance

CVE-2012-3443
Denial-of-service via compressed
image files

CVE-2012-3444
Denial-of-service via large image
files

“What’s the worst that could happen?

-A really good question to ask!

NO REALLY, STOP DOS’ING YOURSELF!

➤ Figure out how much work your code should do

➤ Then figure out whether you can make it do more

➤ Then figure out ways to ensure it does less

➤ Some issues, like compressed formats, pathological regex, etc.
have been around forever — read up on them!

(?:(?:\r\n)?[\t])*(?:(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\
[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:
\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?
[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\
\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r
\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\
\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?
[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\
["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r
\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*)|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\
["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*:(?:(?:\r\n)?[\t])*(?:(?:
(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:
(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r
\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:
(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\
[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[
\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\
["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\]
\000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?
[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\
\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*)*:(?:
(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:
[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r
\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\
\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-
\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*))*\>(?:
(?:\r\n)?[\t])*)(?:,\s*(?:(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\
[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\
[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?
[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|
\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:[^()<>@,;:
\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?
[\t])*))*|(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\
\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)*\<(?:(?:\r\n)?[\t])*(?:@(?:[^()<>@,;:\\".\[\] \000-\031]+
(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r
\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\
\]|\\.)*\](?:(?:\r\n)?[\t])*))*(?:,@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?
[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*)*:(?:(?:\r\n)?[\t])*)?(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\
["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r\n)?[\t]))*"(?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|"(?:[^\"\r\\]|\\.|(?:(?:\r
\n)?[\t]))*"(?:(?:\r\n)?[\t])*))*@(?:(?:\r\n)?[\t])*(?:[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])
+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:(?:\r\n)?[\t])*)(?:\.(?:(?:\r\n)?[\t])*(?:
[^()<>@,;:\\".\[\] \000-\031]+(?:(?:(?:\r\n)?[\t])+|\Z|(?=[\["()<>@,;:\\".\[\]]))|\[([^\[\]\r\\]|\\.)*\](?:
(?:\r\n)?[\t])*))*\>(?:(?:\r\n)?[\t])*))*)?;\s*)

“Values of cookies we’ve set can be
trusted!

-The Django team, circa 2010

“Admin users can be trusted with a bit
of the lookup API!

-The Django team, circa 2010

“We can trust the browser same-origin
sandbox!

-The Django team, circa 2011

“We can trust admin users with the
history log!

-The Django team, circa 2013

“Once we’ve validated a value and
stored it, we can trust it!

-The Django team, circa 2013

CVE-2010-3082
XSS via trusting unsafe cookie
values

CVE-2010-4534
Information leakage in
administrative interface

CVE-2011-0696
CSRF via forged HTTP headers

CVE-2013-0305
Information leakage via admin
history log

No CVE identifier
XSS via admin trusting URLField
values

“We can trust the HTTP Host header
now!

-The Django team, over and over again…

CVE-2011-4139
Host header cache poisoning

CVE-2011-4140
Potential CSRF via Host header

CVE-2012-4520
Host header poisoning

Advisory, 2012-12-10
Additional Host header
hardening

Advisory, 2013-02-19
Additional hardening of Host
header handling

TRUST NO ONE

THIS IS ONLY THE TIP OF
THE ICEBERG

And unlike “Titanic”, the iceberg doesn’t have an
award-winning soundtrack.

THERE’S NO SUCH THING
AS “SECURE”

It’s an important enough idea that this slide is
YELLING about it in ALL CAPS. Again.

QUESTIONS?

