
django IN DEPTH
JAMES BENNETT · PYCON MONTRÉAL
9TH APRIL 2015

ABOUT YOU

• You know Python

• You know some Django

• You want to understand how it really works

ABOUT ME

• Working with Django 8½ years, 5 at Lawrence
Journal-World

• Commit bit since 2007

• Obsessive documenter

WHAT THIS IS

• Django “from the bottom up”

• Deep understanding of the components and how
they fit together

• Things the documentation doesn’t cover

• Django 1.8

WHAT THIS ISN’T

• Beginner tutorial

• API reference

• Writing applications (or any code)

THE ORM

A BLOG

from django.db import models

class Entry(models.Model):
 title = models.CharField(max_length=255)
 pub_date = models.DateTimeField()
 body = models.TextField()

 def __str__(self):
 return self.title

A MAGIC TRICK

>>> from blog.models import Entry
>>> Entry.objects.all()

↓
SELECT blog_entry.id,
 blog_entry.title,
 blog_entry.body
FROM blog_entry;

↓
[<Entry: My first entry>, <Entry: Another entry>]

HOW DID THAT HAPPEN?

DOWN THE RABBIT HOLE…

• Model

• Manager

• QuerySet

• Query

• SQLCompiler

• Database backend

DATABASE BACKENDS

• Base implementation, plus one per supported
database (built-in ones in django/db/models/
backends/)

• Goes in the ENGINE part of database settings

• Specifies extremely low-level behavior

• Is the boundary between Django and the DB
driver modules (psycopg, cx_Oracle, etc.)

DatabaseWrapper

• Subclasses BaseDatabaseWrapper from
django.db.backends.base

• Does what it says on the tin

• Carries basic information about the SQL dialect it
speaks (column types, lookup and pattern
operators, etc.)

• Also knows how to control transaction behavior

DatabaseOperations

• What the name implies

• Knows how to do common casts and value
extractions

• Knows how to do flushes and sequence resets

DatabaseFeatures

• What does this database support?

• Whether casts are needed, whether some types
exist, SELECT FOR UPDATE support, how NULL
ordering works, etc.

DatabaseCreation

• Quirks of creating the database/tables

• Mostly now deals with the variations in index
creation/removal

DatabaseIntrospection

• Used by the inspectdb management command

• Knows how to get lists of tables, columns,
relationships

• Knows how to map DB’s internal column types
back to Django field types

DatabaseSchemaEditor

• Used in migrations

• Knows DB-specific things about modifying the
schema

DatabaseClient

• Used by the dbshell management command

• Knows how to open interactive console session to
the DB

SHOULD YOU WRITE ONE?

• Probably not.

• Writing a DB backend is really only a good idea if
your DB or driver of choice is currently
unsupported

SQLCompiler

• Turns a Django Query instance into SQL for your
database

• Subclasses for non-SELECT queries:
SQLInsertCompiler for INSERT,
SQLDeleteCompiler for DELETE, etc.

THE BRIDGE

• Query.get_compiler() returns a SQLCompiler
instance for that Query

• Which calls the compiler() method of
DatabaseOperations, passing the name of the
desired compiler

• Which in turn looks at
DatabaseOperations.compiler_module to find
location of SQLCompiler classes for current backend

HERE BE DRAGONS

• SQLCompiler is scary, complex code

• The as_sql() method is where the ugly magic
happens

• Pokes into attributes of the Query to find the
building blocks, and DatabaseOperations to help
translate to appropriate SQL

DON’T TRY THIS AT HOME

• MySQL and Oracle backends provide custom
compilers

• MySQL needs it because subqueries

• Oracle needs it because LIMIT and OFFSET are
weird

• You probably don’t ever want to write your own

Query

• Data structure and methods representing a
database query

• Lives in django/db/models/sql/

• Two flavors: Query (normal ORM operations) and
RawQuery (for raw())

BASIC STRUCTURE

• Attributes representing query parts

• select, tables, where, group_by, order_by,
aggregates, etc.

• The as_sql() method pulls it all together and
makes nice (we hope) SQL out of it

In simple terms, a Query is a tree-like data
structure, and turning it into SQL involves going
through its various nodes, calling the as_sql()
method of each one to get its output.

This is a pattern we’ll see again.

HERE BE MORE DRAGONS

THE SPRAWL

• django/db/models/sql/query.py is over 2,000
lines of code

• And still doesn’t do everything: the rest of django/
db/models/sql is support code for it

WHY?

• Django’s high-level ORM constructs are infinitely
and arbitrarily chain-able

• Every time you add something new, it has to be
merged into the existing query structure

• This is a very hard problem.

Most of the complexity of the Query comes from
this merging process. Every legal combination of
QuerySet methods and options has to be
supported here, plus hooks for custom
extensions (such as end-user-supplied or third-
party lookup options).

As a result, you almost never want to write a
custom subclass of Query; instead, subclass
QuerySet and work at a higher level.

Except…

QUERY EXPRESSIONS AND
FUNCTIONS

QUERY EXPRESSIONS

• Allow more complex logic and references

• Allow access to more advanced SQL constructs

BUILT-IN EXAMPLES

• When — implements WHEN … THEN in SQL

• Case — implements CASE statements in SQL

• F — implements references to columns or
annotations

• Func — implements calls to SQL functions

DATABASE FUNCTIONS

• Implemented using the Func query expression

• Allows queries to call out to SQL functions

• Built-in examples: support for UPPER, SUBSTRING
and COALESCE

CUSTOM LOOKUPS

• Added in Django 1.7

• Just subclass django.db.models.Lookup,
implement as_sql() and give it a lookup_name

• Register it for all field types, or for specific field
types, as you like

• Can also transform results by subclassing
Transform instead of Lookup

WE’VE SEEN THIS BEFORE

• Custom lookups and transforms are given access
to the SQLCompiler instance, and the left- and
right-hand sides of the expression

• And the as_sql() method is how we output the
correct SQL to use

QuerySet

• django/db/models/query.py

• Wraps a Query instance in a nice API

• Actually implements the high-level query methods
you use

• Acts as a container-ish object for the results

LAZINESS

• Most of the time, does nothing except twiddle its
(and the wrapped Query’s) attributes in response
to method calls, returning the modified QuerySet
object

• Until you force it to execute the query

HOW TO FORCE A QUERY

• Call a method that doesn’t return a QuerySet

• Call a method which requires actually querying the
database to populate results, check existence of
results, check the number of results, etc.

• Including special Python methods

CUSTOM CLASS BEHAVIOR

• QuerySet gets a lot of its behavior from Python
class customization

• Implements __iter__() to be iterable (this forces
a query), implements __len__(), __bool__() and
__nonzero__() to check number/existence of
results, __getitem__ (for slicing/indexing), etc.

ONE SPECIAL NOTE

• __repr__() will perform a query, and will add a
LIMIT 21 to it

• Saves you from yourself: accidentally repr()-ing a
QuerySet with a million results in it is bad for your
computer/server

IT’S A CONTAINER

• Each instance of QuerySet has an internal results
cache

• Iterating will pull from the results cache if
populated rather than re-executing the query

IT’S A CONTAINER?

>>> my_queryset = SomeModel.objects.all()
>>> my_queryset[5].some_attribute
3
>>> my_queryset[5].some_attribute = 2
>>> my_queryset[5].save()
>>> my_queryset[5].some_attribute
3
>>> # WAT

WHAT HAPPENED?

• A performance trade-off

• Calling a QuerySet method will usually clone the
pre-existing QuerySet, apply the change, and
return the new instance (doing a new query)

• Except for iteration, length/existence checks,
which can re-use the existing QuerySet instance’s
results cache without doing a new query

USEFUL METHODS

update()

• Tries to make the requested change in a single
SQL UPDATE query instead of updating each row
individually

• Doesn’t execute custom save() methods on the
model, and doesn’t send pre_save or post_save
signals

delete()

• Like update(), but for deleting; tries to do a single
SQL DELETE query

• Doesn’t execute custom delete() methods on the
model, but does send pre_delete and
post_delete signals (including for things deleted
by cascade)

exists()

• Returns True or False depending on whether the
QuerySet has results

• If the QuerySet is already evaluated, uses its results
cache

• If not, does a (fast!) query to check for existence of
results

• Usually faster than doing boolean evaluation of the
QuerySet

defer() / only()

• Return partial model instances with only some
fields queried/filled

• Give you fine-grained control over exactly which
columns are queried in the DB

• Access to un-queried fields will result in a new
query to fetch the data

values() / values_list()

• Also let you control which fields are retrieved

• Don’t return model instances at all; values()
returns dictionaries, values_list() returns lists

• values_list(flat=True), with a single field
name, returns a single flattened list

SOLVING THE N+1 PROBLEM

• select_related() — get results plus foreign-key
related objects in a single query (joining in SQL)

• prefetch_related() — can fetch many-to-many
and generic relations with one query per relation
(joining in Python)

BUT WAIT, THERE’S MORE

• update_or_create() — like get_or_create() but
looks for an existing instance to update

• select_for_update() — locks the selected rows until
end of transaction

• extra() — close to raw(), but lets you add custom
clauses to a regular QuerySet

• And many more: https://docs.djangoproject.com/en/
1.8/ref/models/querysets/

https://docs.djangoproject.com/en/1.8/ref/models/querysets/

WRITE YOUR OWN

• Advantage: a whole lot simpler than writing a
custom Query subclass

• Advantage: becomes chain-able since your
custom methods will (presumably) return an
instance of your custom QuerySet

• Disadvantage: you usually also need a custom
manager to go with it

MANAGERS

• The high-level interface

• Attach directly to a model class (and know which
model they’re attached to, via self.model)

• Create and return a QuerySet for you

• Expose most of the methods of QuerySet

OPTIONS

• Don’t specify one at all — Django will create a
default one and name it objects

• If you specify one, Django doesn’t create the
default objects manager

• One model class can have multiple managers

• First one defined becomes the default (accessible
via _default_manager)

HOW IT WORKS

• Manager’s get_queryset() method returns a
QuerySet for the model

• Almost everything else just proxies through to that

• Except raw(), which instantiates a RawQuerySet

from django.db import models

class Entry(models.Model):
 LIVE_STATUS = 1
 DRAFT_STATUS = 2
 STATUS_CHOICES = (
 (LIVE_STATUS, ‘Live’),
 (DRAFT_STATUS, ‘Draft’),
)
 status = models.IntegerField(
 choices=STATUS_CHOICES
 default=LIVE_STATUS
)

CUSTOM MANAGER

class LiveEntryManager(models.Manager):
 def live(self):
 return self.filter(
 status=self.model.LIVE_STATUS
)

class Entry(models.Model):
 …
 objects = LiveEntryManager()

live_entries = Entry.objects.live()

A BETTER WAY
class EntryQuerySet(models.QuerYSet):
 def live(self):
 return self.filter(
 status=self.model.LIVE_STATUS
)

class EntryManager(models.Manager):
 def get_queryset(self):
 return EntryQuerySet(self.model)

live_in_april = Entry.objects.filter(
 pub_date__year=2015,
 pub_date__month=4).live()

CAUTION

• Overriding get_queryset() will affect all queries
made through that manager

• Usually best to keep a vanilla manager around so
you can access everything normally

MODELS

• Finally!

• The actual representation of the data and
associated logic

• One model class = one table; one model field =
one column

THE MODEL METACLASS

• django.db.models.base.ModelBase

• Does the basic setup of the model class

• Handles Meta declaration, sets up default manager
if needed, adds in model-specific exception
subclasses, etc.

Most of the actual heavy lifting is not done in the
metaclass itself; instead, anything which requires
special behavior — like many model fields —
should define a method named
contribute_to_class(), which will be called
and passed the model class and the name it will
be bound to in the class.

ModelBase then loops through the attribute
dictionary of the new class, and calls
contribute_to_class() on anything which
defines it.

MODEL FIELDS

• Subclasses of django.db.models.Field

• Fields do a lot of work

DATA TYPES

• get_internal_type() can return a built-in field
type if similar enough to that type

• Or db_type() can return a custom database-level
type for the field

VALUE CONVERSION

• to_python() converts from DB-level type to
correct Python type

• value_to_string() converts to string for
serialization purposes

• Multiple methods for preparing values for various
kinds of DB-level use (querying, storage, etc.)

MISCELLANY

• formfield() returns a default form field to use for
this field

• value_from_object() takes an instance of the
model, returns the value for this field on that
instance

• deconstruct() is used for data migrations (i.e.,
what to pass to __init__() to reconstruct this value
later)

FLAVORS OF INHERITANCE

• Abstract parents

• Multi-table

• Proxy models

ABSTRACT MODELS

• Indicated by abstract = True in the Meta
declaration

• Don’t create a database table

• Subclasses, if not abstract, generate a table with
both their own fields and the abstract parent’s

• Subclasses can subclass and/or override abstract
parent’s Meta

MULTI-TABLE INHERITANCE

• No special syntax: just subclass the other model

• Can’t directly subclass parent Meta, but can
override by re-declaring options

• Can add new fields, managers, etc.

• Subclass has implicit OneToOneField to parent

PROXY MODELS

• Subclass parent, declare proxy = True in Meta

• Will reuse parent’s table and fields; only allowed
changes are at the Python level

• Proxy subclass can define additional methods,
manager, etc.

• Queries return instances of the model queried;
query a proxy, get instances of the proxy

UNMANAGED MODELS

• Set managed = False in Meta

• Django will not do any DB management for this
model: won’t create tables, won’t track migrations,
won’t auto-add a primary key if missing, etc.

• Can declare fields, define Meta options, define
methods normally aside from that

Unmanaged models are mostly useful for
wrapping a pre-existing DB table, or DB view,
that you don’t want Django to try to mess with.

While they can be used to emulate some aspects
of model inheritance, declaring a proxy subclass
of a model is almost always a better way of
doing that.

QUESTIONS?

THE FORMS LIBRARY

MAJOR COMPONENTS

• Forms

• Fields

• Widgets

• Model ⇔ form conversion

• Media support

WIDGETS

• One for each type of HTML form control

• Low-level operations

• Know how to render appropriate HTML

• Know how to pull their data out of a submission

• Can bundle arbitrary media (CSS, JavaScript) to
include and use when rendering

IN AND OUT

• When data is submitted, a widget’s
value_from_datadict() method pulls out that
widget’s value

• When displaying a form, a widget’s render()
method is responsible for generating that widget’s
HTML

MultiWidget

• Special class that wraps multiple other widgets

• Useful for things like split date/time

• decompress() method unpacks a single value into
multiple

FIELDS

• Represent data type and validation constraints

• Have widgets associated with them for rendering

VALIDATING DATA

• Call field’s clean() method

• This calls field’s to_python() method to convert value to
correct Python type

• Then calls field’s validate() method to run field’s own built-in
validation

• Then calls field’s run_validators() method to run any
additional validators supplied by end user

• clean() either returns a valid value, or raises
ValidationError

VALIDATORS

def require_pony(value):
 if ‘pony’ not in value:
 raise forms.ValidationError(
 ‘Value must contain a pony’
)

In some form class:
pony = forms.CharField(validators=[
 require_pony,
])

CHOOSING A VALIDATION
SCHEME

• to_python() in a field: when validation constraint
is tied tightly to the data type

• validate() in a field: when validation constraint is
intrinsic to the field

• validators argument to a field: when the basic
field does almost all the validation you need, and
it’s simpler to write a validator than a whole new
field

ERROR MESSAGES

• Django has a set of standard ones

• Built-in fields supplement these

• Stored in a dictionary error_messages on the field
instance

• Standard keys: required, invalid

FIELDS AND WIDGETS

• Each field technically has two widgets: second one
is used when it’s a hidden field

• widget_attrs() method gets passed the widget
instance, and can return a dictionary of HTML
attributes to pass to it

FORMS

• Tie it all together in a neat package

• Provide the high-level interface you’ll actually use

FORMS HAVE A METACLASS

• You can use it directly if you want:
django.forms.BaseForm

• But probably not a good idea unless you’re
constructing form classes dynamically at runtime

The main thing to know about is that a form class
ends up with two field-related attributes:
base_fields and fields.

base_fields is the default set of fields for all
instances of that form class. fields is the set of
fields for a specific instance of the form class.

BUILD A FORM DYNAMICALLY

base_fields = {
 ‘name’: forms.CharField(max_length=255),
 ‘email’: forms.EmailField(),
 ‘message’: forms.CharField(
 widget=forms.Textarea
),
}

ContactForm = type(‘ContactForm’,
 (forms.BaseForm,),
 {‘base_fields’: base_fields})

IS EQUIVALENT TO

class ContactForm(forms.Form):
 name = forms.CharField(max_length=255)
 email = forms.EmailField()
 message = forms.CharField(
 widget=forms.Textarea
)

WORKING WITH DATA

• Instantiating a form with data will cause it to wrap
its fields in instances of
django.forms.forms.BoundField

• Each BoundField has a field instance, a reference
to the form it’s in, and the field’s name within that
form

• BoundField instances are what you get when you
iterate over the form

VALIDATION

• Call the form’s is_valid() method

• That applies field-level validation

• Then form-level validation

• Then sets up either cleaned_data or errors
attribute

FIELD VALIDATION

• For each field, call its widget’s
value_from_datadict() to get the value for the field

• Call field’s clean() method

• Call any clean_<fieldname>() method on the form
(if field clean() ran without errors)

• Errors go into form’s errors dict, keyed by field
name

FORM VALIDATION

• Form’s clean() method

• Happens after field validation, so cleaned_data
may or may not be populated depending on prior
errors

• Errors raised here end up in error dict under the
key __all__, or by calling non_field_errors()

ERROR MESSAGES

• Stored in an instance of
django.forms.utils.ErrorDict

• Values in it are instances of
django.forms.utils.ErrorList

• Both of these know how to print themselves as
HTML

DISPLAYING A FORM

• Default representation of a form is as an HTML
table

• Also built in: unordered list, or paragraphs

• None of these output the containing <form></
form> or the submit elements

• _html_output() method can be useful for
building your own custom form HTML output

ModelForm

• Introspects a model class and makes a form out of
it

• Basic structure (declarative class plus inner options
class) is similar to models

• Uses model meta API to get lists of fields, etc.

• Override/configure things by setting options in
Meta

GETTING FORM FIELDS AND
VALUES

• Calls the formfield() method of each field in the
model

• Can be overridden by defining the method
formfield_callback() on the form

• Each field’s value_from_object() method called
to get the value of that field on that model
instance

SAVING

• django.forms.models.construct_instance()
builds an instance of the model with form data
filled in

• django.forms.models.save_instance() actually
(if commit=True) saves the instance to the DB

• Saving of many-to-many relations is deferred until
after the instance itself has been saved; with
commit=False, you have to manually do it

FORM MEDIA

• Forms and widgets support inner class named Media

• Which in turn supports values css and js, listing CSS
and JavaScript assets to include when rendering the
form/widget

• css is a dict where keys are CSS media types; js is
just a list

• Media objects are combinable, and results only
include one of each asset

Actually, any class can support media definitions;
widgets and forms are just the ones that support
them by default.

To add media to another class, have that class
use the metaclass
django.forms.widgets.MediaDefiningClass. It
will parse an inner Media declaration and turn it
into a media property with the same behaviors
(i.e., combinable, prints as HTML, etc.) as on
forms.

QUESTIONS?

THE TEMPLATE SYSTEM

MAJOR COMPONENTS

• Engine

• Loader

• Template

• Tag and filter libraries

• Context

TEMPLATE ENGINES

• New in Django 1.8

• Wrap a template system in a consistent API

• Built-in engines for Django’s template language
and for Jinja2

TEMPLATE ENGINES

• Subclass
django.template.backends.base.BaseEngine

• Must implement get_template(), can optionally
implement other methods

• Typically will define a wrapper object around the
template for consistent API

TEMPLATE LOADERS

• Do the hard work of actually finding the template
you asked for

• Required method: load_template_source(),
taking template name and optional directories to
look in

• Should return a 2-tuple of template contents and
template location

TEMPLATE OBJECTS

• Instantiate with template source

• Implement render() method receiving optional
context (dictionary) and optional request
(HttpRequest object), returning string

Of course, this glosses over a lot of details of
how a template language works…

THE DJANGO TEMPLATE
LANGUAGE

KEY CLASSES

• All in django/template/base.py

• Template is the high-level representation

• Lexer and Parser actually turn the template source
into something usable

• Token represents bits of the template during parsing

• Node and NodeList are the structures which make up
a compiled Template

TEMPLATE LEXING

• Instantiate with template source, then call
tokenize()

• Splits the template source using a regex which
recognizes start/end syntax of tags and variables

• Creates and returns a list of tokens based on the
resulting substrings

TOKENS

• Come in four flavors: Text, Var, Block, Comment

• Gets the text of some piece of template syntax,
minus the start/end constructs like {% … %} or
{{ … }}

TEMPLATE PARSING

• Instantiate Parser with list of tokens from Lexer, then
call parse()

• Each tag and filter (built-in or custom) gets registered
with Parser

• Each tag provides a compilation function, which
Parser will call to produce a Node

• Variables get automatically translated into
VariableNode, plain text into TextNode

TAG COMPILATION

• Each tag must provide this

• It gets access to the token representing the tag, and
to the parser

• Can just be simple and instantiate/return a Node
subclass

• Or can use the parser to do more complex things like
parsing ahead to an end tag, doing things with all the
nodes in between, etc.

NODES

• Can be an individual Node, or a NodeList

• Defining characteristic is the render() method
which takes a Context as argument and returns a
string

The full process transforms the string source of
the template into a NodeList, with one Node for
each tag, each variable and each bit of plain text.

Then, rendering the template simply involves
having that NodeList iterate over and render()
its constituent nodes, concatenating the results
into a single string which is the output.

VARIABLES

• Basic representation is a VariableNode

• Filters are represented by FilterExpression
which parses out filter names, looks up the correct
functions and applies them

• render() consists of resolving the variable in the
context, applying the filters, returning the result

TEMPLATE CONTEXT

• Lives in django/template/context.py

• Behaves like a dictionary

• Is actually a stack of dictionaries, supporting push/
pop and fall-through lookups

• First dictionary in the stack to return a value wins

The stack implementation of Context is crucial,
since it allows tags to easily set groups of
variables by pushing a new dictionary on top,
then clean up after themselves by popping that
dictionary back off the stack.

Several of the more interesting built-in tags use
this pattern.

However, be aware of the performance
implications: just as nested namespaces in
Python code will slow down name lookups, so
too lots of nested dictionaries on the context
stack will slow down variable resolution.

RenderContext

• Attached to every Context: is a thread-safety tool for
simultaneous renderings of the same template
instance

• Each call to render() pushes its own dictionary on
top, pops when done rendering, and only the topmost
dictionary is searched during name resolution in
RenderContext

• Tags with thread-safety issues can store their state in
the RenderContext and know they’ll get the right state

QUESTIONS?

REQUEST/RESPONSE
PROCESSING

THE ENTRY POINT

• Request handler, in django/core/handlers

• WSGIHandler is the only one supported now

• Implements a WSGI application

HANDLER LIFECYCLE

• Sets up middleware

• Sends request_started signal

• Initializes HttpRequest object

• Handler calls its own get_response() method

• Transforms HttpResponse into appropriate
outgoing format, and returns that

get_response()

• Apply request middleware

• Resolve URL

• Apply view middleware

• Call view

• Apply response middleware

• Return response

The bulk of get_response() is actually error
handling. It wraps everything in try/except,
implements the exception handling for failed
URL resolution and errors in middleware or
views, and also wraps the view in a transaction
which can be rolled back in case of error.

URL RESOLUTION

• High-level:
django.core.urls.RegexURLResolver

• Takes URLconf import path, and optional prefix
(for include())

• Will import the URLconf and get its list of patterns

• Implements the resolve() method which returns
the actual view and arguments to use

URL PATTERNS

• Instances of RegexURLPattern

• Stores regex, callback (the view), and optional
name and other arguments

• Implements a resolve() method to indicate
whether a given URL matches it

MATCHES

• Returned in the form of a ResolverMatch object

• Unpacks into view, positional arguments, keyword
arguments

• Has other information attached, including optional
namespace, app name, etc.

URL RESOLUTION

• RegexURLResolver iterates over the supplied patterns,
popping prefixes as necessary (for include())

• Keeps a list of patterns it tried and didn’t get a match
on

• Returns the first time it gets a ResolverMatch from
calling resolve() on a RegexURLPattern

• Or raises Resolver404 if no match, includes list of
failed patterns for debugging

This process is potentially nested many times;
each URLconf you include() from your root
URLconf will have its own associated
RegexURLResolver (prefixed).

There is short-circuit logic to check that the prefix
matches before proceeding through the
patterns, to avoid pointlessly doing match
attempts that are guaranteed to fail.

Under the hood, the RegexURLResolver of the
root URLconf is given a prefix of “^/“

ERROR HANDLING

• Handler’s get_exception_response() method is
invoked

• First tries to look up a handler for the error type in
the root URLconf (handler404, handler500, etc.)
and call and return that response

• If all else fails, handler’s
handle_uncaught_exception() is called

The error handling is robust in the sense that it
can keep information from leaking, but not in the
sense of always returning something friendly to
the end user.

If the initial handling of an error fails, Django
promotes it to an error 500 and tries to invoke
the handler500 view. If attempts to handle the
exception keep raising new ones, Django gives
up and lets the exception propagate out.

For this reason, it’s important to have your
handler500 be as bulletproof as possible, or just
use Django’s default implementation.

Django never attempts to catch SystemExit.

REQUEST AND RESPONSE

• HttpRequest is technically handler-specific, but
there’s only one handler now

• HttpResponse comes in multiple flavors
depending on status code

• Built-in: 301, 302, 400, 403, 404, 405, 410, 500

• Plus JsonResponse for JSON output

VIEWS

• Must meet three requirements to be a Django
view

• Is callable

• Accepts an HttpRequest as first positional
argument

• Returns an HttpResponse or raises an exception

FUNCTIONS OR CLASSES

• Most end-user-written views are likely to be
functions, at least at first

• Class-based views are more useful when reusing/
customizing behavior

CLASS-BASED GENERIC VIEWS

• Inheritance diagram is complex

• Actual use is not

• Most of the base classes and mixins exist to let
functionality be composed à la carte in the classes
end users will actually be working with

THE BASICS

• self.request is the current HttpRequest

• Dispatch is done by dispatch() method, based on
request method, to methods of the correct name: get(),
post(), etc.

• You probably want TemplateResponseMixin somewhere
in your inheritance chain if it’s not already, for easy
template loading/rendering

• Call as_view() when putting it in a URLconf, which
ensures the dispatch() method will be what’s called

The great advantage of class-based views is in
the composability/reusability of functionality,
and the ease with which they avoid the large
argument lists functions would require to
support the same customization.

The primary disadvantage is the proliferation of
mixins and base classes needed to provide all
the combinations of behaviors Django’s generic
views support.

QUESTIONS?

