
django in Depth
James Bennett • PyCon Atlanta • February 18, 2010

Let’s talk about you

You’ve done a Python tutorial

You’ve done a Django tutorial

You want to understand how all the parts fit together

Let’s talk about me

Working with Django for 4½ years; last 4 at the Lawrence
Journal-World

Release manager for the project

Author, “Practical Django Projects” (Apress)

Let’s talk about this tutorial

“Bottom-up” approach

Lots of gory details

ORM, forms, templates, requests, admin

Undocumented APIs

Covers Django 1.2 (soon to be released)

The ORM

from django.db import models

class Entry(models.Model):
 title = models.CharField(max_length=255)
 pub_date = models.DateTimeField()
 body = models.TextField()

 def __unicode__(self):
 return self.title

Look, it’s a blog!

>>> from blog.models import Entry
>>> Entry.objects.all()

SELECT "blog_entry"."id",
 "blog_entry"."title",
 "blog_entry"."pub_date",
 "blog_entry"."body"
FROM "blog_entry";

⬇

[<Entry: My first entry>, <Entry: Another entry>]

⬇

A magic trick

How it works
(in excruciating detail)

Down the rabbit hole…

Model

Manager

QuerySet

Query

SQLCompiler

Database backend

Database backends

At least one backend module for each supported database
(in django.db.backends)

Goes in the ENGINE portion of the database settings

Specifies extremely low-level behavior

Provides the boundary between Django and the DB driver
(psycopg, cx_Oracle, etc.)

Made up of several classes

DatabaseWrapper

Knows how to connect to the database and return a cursor

Provides the transaction-management hooks

Maps Python-level lookup types to SQL operators in the
DB’s dialect

DatabaseOperations

Understands and implements a particular database’s
“quirks”

Knows how to generate DB-specific SQL (typecasts, DDL,
quoting, transaction begin/end/commit)

Can specify an alternate query generator for more fine-
grained SQL control

DatabaseFeatures

What does this database support?

Savepoints, autocommit modes, certain NULL-handling
quirks

Type constraints

DatabaseCreation

Knows how to create your database (and test database)
and tables in it

Maps model field types to column types

DatabaseIntrospection

Used by inspectdb

Knows how to get list of tables

Handles reverse mapping of column types to model field
types

Detects relations on DBs which allow it

Other bits

DatabaseClient can fire up an interactive shell (for
dbshell)

DatabaseValidation can implement DB-specific
validation of model definitions

DatabaseError and IntegrityError provide
normalized exception classes for errors from the DB

Write a new backend if…

Django doesn’t support your database or driver of choice

You want to control the connection mechanism (you can do
connection pooling at this level)

You need really low-level overriding of operations (like field
type mappings or SQL generation)

SQLCompiler

Base classes in django.db.models.sql.compiler

Compiles a Query to SQL

Executes the SQL against the correct DB

Returns the results

Flavors of SQLCompiler

SQLCompiler is the base class, and the default for most
queries (i.e., SELECT queries)

One subclass for each other query type:
SQLInsertCompiler, SQLDeleteCompiler, etc.

Subqueries for aggregates go through
SQLAggregateCompiler

SQLDateCompiler is a special case used for dates()
queries

You shouldn’t ever need to
work with SQLCompiler
directly…

…unless you’re writing the
Oracle backend…

…but just in case:

Query.get_compiler() returns a SQLCompiler
instance

Calls DatabaseOperations.compiler()

DatabaseOperations.compiler_module
specifies the module name, Query.compiler specifies
the class name

Oracle backend uses this to provide a compiler which
understands Oracle’s SQL dialect

The Query class

Base class in django.db.models.sql.query

A big scary data structure

Tracks all the elements of the eventual query: columns,
tables, joins, orderings, etc.

Here be dragons (db/models/sql/query.py is over
1800 lines of code)

What’s in Query

Attributes storing building blocks which become SELECT,
FROM, WHERE, HAVING, ORDER BY, limit and offset, etc.

Methods for manipulating these attributes

Most high-level things you do in queries end up as calls to
Query.add_filter()

Flavors of Query

Just like SQLCompiler, subclasses exist for different
query types: INSERT, DELETE, etc.

Specialized subclasses for aggregates and dates()
queries

And brand-new in Django 1.2: RawQuery implements
raw()

Changes in Django 1.2

Query used to be the bottom of the chain, and generated
the SQL with help from the backend

Database backends would swap out the Query class as
needed

SQLCompiler handles the SQL generation now

Playing with Query

You probably don’t need to (though prior to 1.2, some DB
backends did)

Vast majority of code in Query just does bookkeeping

__str__() is useful: returns the query as a string of SQL
(generated by SQLCompiler)

QuerySet

Wraps a Query instance

Knows which model to query

Implements the high-level querying methods you actually
use

Acts as a container-ish object for accessing query results

Laziness

No results until forced to fetch them

Results may or may not be cached depending on use

Methods which force a query

Methods which don’t return a QuerySet

Methods which return the number of results or check
whether there are results

Methods which force a query

aggregate()

count()

create()

delete()

exists()

get()

get_or_create()

in_bulk()

iterator()

latest()

update()

Other ways to force a query

Iteration (in a for loop or
otherwise)

Slicing (one item or
multiple)

Boolean evaluation (in an
if statement)

len()

repr()

list()

Pickling

Caching

__repr__() is special

Will add LIMIT 21 to the query

Saves you from yourself: accidentally repr()-ing a
QuerySet with a million results can suck

Also saves you from debug pages which print string
representations of variables

A QuerySet is a container

QuerySet instances have an internal result cache

Iterating a QuerySet multiple times only does the query
once (subsequent iterations use the cache)

>>> my_queryset = SomeModel.objects.all()
>>> my_queryset[5].some_attribute
False
>>> my_queryset[5].some_attribute = True
>>> my_queryset[5].save()
>>> my_queryset[5].some_attribute
False
>>> # what?

A container?

Indexing is special

Trade-off: indexing/slicing imply LIMIT/OFFSET and
generate the appropriate (new) query

Each query returns a separate in-memory copy of the model
instance(s)

Methods you’ve never heard of
(but should use)

update()

Issues a bulk update of every record in the QuerySet

Executes in a single SQL UPDATE statement

Doesn’t execute custom save() methods

delete()

Deletes every record in the QuerySet

May or may not be a single SQL DELETE statement

May or may not execute custom delete() methods

iterator()

Returns an iterator over the results, instantiates only one
object at a time

No internal result cache

Big memory saving for large result sets

exists()

Returns True if the query has results, False otherwise

If the QuerySet already evaluated, checks the result
cache

If not, does a (fast) query to see if results would exist

Usually better than just doing if some_queryset

defer() and only()

Return “partial” model instances, with only some fields
filled in

Let you control exactly which fields are selected by the
query

values() and
values_list()

Like defer() and only(), let you control which fields
are selected

Don’t return model instances: values() returns
dictionaries, values_list() returns lists

values_list(flat=True), with a single field name,
returns a single list

Write your own!

Writing a QuerySet subclass with additional query
methods is easy

Example: http://simonwillison.net/2008/May/1/orm/

http://simonwillison.net/2008/May/1/orm/
http://simonwillison.net/2008/May/1/orm/

Manager

Starting point for nearly all queries

Attached directly to a model class, accessible as
self.model on the manager

Exposes most of the query methods of QuerySet

Manager options

Don’t specify one at all, Django creates one for you and
names it objects

If you specify one, Django doesn’t create the default
objects manager

One model can have multiple managers

First manager defined is the “default” manager, and
becomes the attribute _default_manager

How it works

Manager.get_query_set() returns a QuerySet

Everything else just calls methods on the returned
QuerySet

Except raw(), which directly instantiates and returns a
RawQuerySet

class Entry(models.Model):
 LIVE_STATUS = 1
 DRAFT_STATUS = 2
 STATUS_CHOICES = (
 (LIVE_STATUS, ‘Live’),
 (DRAFT_STATUS, ‘Draft’),
)
 status = models.IntegerField(choices=STATUS_CHOICES,
 default=LIVE_STATUS)

Blog entries with status

class EntryManager(models.Manager):
 def live(self):
 return self.filter(status=self.model.LIVE_STATUS)

Custom manager

class Entry(models.Model):
 …fields and such…
 objects = EntryManager()

live_entries = Entry.objects.live()

Put it together

class EntryQuerySet(QuerySet):
 def live(self):
 return self.filter(status=self.model.LIVE_STATUS)

class EntryManager(models.Manager):
 def get_query_set(self):
 return EntryQuerySet(self.model)

Now you can do...
may_2009 = Entry.objects.filter(pub_date__year=2009,
 pub_date__month=5)
may_2009_live = may_2009.live()

Do it in QuerySet

But be careful

Overriding get_query_set() affects all queries for
that manager

Can lead to unpleasant results if you really want to fetch
certain objects but your custom QuerySet filters them
out

The power of managers

Encapsulate common query patterns

Got status fields on lots of models? Write a manager with
query methods for it and re-use

More exotic query types, too: want a
most_commented() method?

Multiple databases

New in Django 1.2

Mostly low-level API bits for now

Database routers

Determine which DBs get reads, writes and syncdb

Can allow/disallow creation of relations

Specified in the DATABASE_ROUTERS setting

Default router saves objects to the DB they were queried
from, uses the default DB unless otherwise specified

Manual control

QuerySet.using() takes a DB connection alias and
passes it down the chain

Manager.db_manager(name) returns a new
Manager instance using that connection

save() and delete() take a using argument

Tracking models

Each model instance has a new attribute: _state

Instance of
django.db.models.base.ModelState

ModelState.db is the name of a DB connection

Set automatically by save() and by a QuerySet doing
retrieval

Use cases

Sharding: write a router which determines where to read/
write data

Master/slave replication: send all writes to the master, read
from the slaves

Disparate data sets: override Manager.get_query_set() to
always use a particular DB

Limitations

Cross-database relations are not supported by most DBs

Order of routers is significant: first router to return a DB
name wins

Models

Represent data: one model class (usually) maps to one
database table

Fields (usually) map to columns in that table

Specify options: ordering, human-readable name, etc.

Methods for saving/deleting

Custom methods for business logic

Model classes

django.db.models.Model uses a metaclass:
django.db.models.base.ModelBase

ModelBase sets up some attributes, delegates setup of
others

ModelBase

Parses Meta declaration, fields and inheritance, creates
the Options instance on the model class

Adds per-model exception classes (DoesNotExist, etc.)

Sends signals for model class preparation and registers the
model class

Model customization hooks

contribute_to_class(cls, name) will be called
by ModelBase while the model class is being constructed

django.db.models.signals.class_prepared
will be sent after ModelBase finishes constructing the
model class

contribute_to_class()

Any attribute of the model class which has this method will
have it called

Gets passed the model class and the attribute name

Used to set up any special behavior (usually for model field
types)

class_prepared

Has only one argument: sender, which is the class just
constructed

Allows code to run any time a model class is parsed/
constructed

Django uses this signal to ensure each model has at least
one manager attached

The Options class

In django.db.models.options

Holds all the stuff you put in that class Meta
declaration

Plus other metadata about the model

Ends up as the attribute _meta of the model class

Useful tricks

_meta.fields is a list of the model’s fields

_meta.many_to_many is a list of the model’s many-to-
many relationships

_meta.get_field() returns the actual field objects

>>> from blog.models import Entry
>>> opts = Entry._meta
>>> [f.name for f in opts.fields]
['id', 'title', 'pub_date', 'body']
>>> opts.get_field(‘title’)
<django.db.models.fields.CharField object at 0x1429530>
>>> opts.get_field('title').max_length
255

See it in action

>>> from django.contrib.auth.models import User
>>> alice = User.objects.get(username=‘alice’)
>>> bob = User.objects.get(username=‘bob’)
>>> opts = User._meta
>>> username_field = opts.get_field(‘username’)
>>> username_field.value_from_object(alice)
u’alice’
>>> username_field.value_from_object(bob)
u’bob’

See it in action

Model instance lifecycle

Instantiation calls __init__()

django.db.models.signals.pre_init sent

Field values initialized (if creating new object with values,
or retrieving existing object from the database)

django.db.models.signals.post_init sent

Model instance lifecycle

Save data by calling save()…

…which calls base_save()

base_save() figures out whether to do INSERT or
UPDATE query and which DB to use, and saves the data

save() and save_base() are separate for reasons of
API cleanliness

Model instance lifecycle

Delete data by calling delete()

Figures out which related objects need deletion (ensures
integrity even on DBs which don’t support it natively)

Customization points

Override save() or delete()

Listen for signals sent during model life cycle

This is wrong
def save(self):

This worked on 1.1
def save(self, force_insert=False, force_update=False):

This works on 1.2
def save(self, force_insert=False, force_update=False,
using=None):

This is how you should actually do it:
def save(self, *args, **kwargs):
 # Do your custom stuff
 # Always call parent save() at some point
 super(SomeModel, self).save(*args, **kwargs)

Overriding save()

This worked in 1.1
def delete(self):

This works in 1.2
def delete(self, using=None):

Once again, you should do
def delete(self, *args, **kwargs):
 # Do your custom stuff
 # Call parent delete()
 super(SomeModel, self).delete(*args, **kwargs)

Overriding delete()

Overriding delete()

You can skip the parent class’ delete() method if you
don’t want to actually delete data

Useful for implementing “delete with undo”: pair with a
custom manager which hides “deleted” objects

Don’t override __init__().
No, really. Don’t.

Useful signals

All live in django.db.models.signals

pre_init and post_init sent at beginning/end of
__init__()

pre_save and post_save sent at beginning/end of
save_base()

pre_delete and post_delete sent at beginning/end
of delete()

The model cache

Lives in django.db.models.loading

Tracks all models from all installed applications

Prevents certain issues with duplicate copies of model
classes

Provides a generic way to get models

How models are tracked

Combination of application “label” and model name

django.contrib.auth.models.User ➟ “auth”,
“user”

These exist on the model’s Options instance as the
attributes app_label and module_name

>>> from django.db.models.loading import cache
>>> user_model = cache.get_model(‘auth’, ‘user’)
>>> user_model
<class 'django.contrib.auth.models.User'>
>>> auth_app = cache.get_app('auth')
>>> cache.get_models(auth_app)
[<class 'django.contrib.auth.models.Permission'>,
<class 'django.contrib.auth.models.Group'>,
<class 'django.contrib.auth.models.User'>,
<class 'django.contrib.auth.models.Message'>]

In action

Useful methods

get_model(app_label, model_name) -- returns
a model class

get_app(app_label) -- returns that application’s
models module

get_models(app) -- given models module, returns
all model classes in it

get_models() -- returns all installed models

>>> from django.db.models.loading import cache
>>> model_str = “some_app.some_model”
>>> mod = cache.get_model(*model_str.split(‘.’))
>>> objects = mod._default_manager.all()
etc.

Generic querying

It’s everywhere

AUTH_PROFILE_MODULE takes an
app_label.model_name string

django.contrib.contenttypes uses app_label/
model_name pairs to track models

Admin uses app_label/model_name pairs to identify models
from URLs

etc., etc.

Model fields

Most live in django.db.models

Some bundled apps include more field types

Each field type represents a particular type of data and
optionally constraints on values of that type

Under the hood: data types

get_internal_type() can return the name of a built-
in field type; DB-level data type will be same as that field
type

db_type() can name a custom data type for use at the
DB level

Under the hood: conversion

to_python() converts a value from the DB to a Python
value suitable for the field type

get_prep_value() converts a Python field value to
(generic) DB format

get_db_prep_value() is like
get_prep_value() but applies DB-specific quirks

Under the hood: querying

get_prep_lookup() converts a value to the correct
(generic) format for a particular type of query (and is given
the lookup type as an argument)

get_db_prep_lookup() is similar, but applies DB-
specific quirks

Under the hood: saving

pre_save() can do generic preprocessing

get_db_prep_save() allows DB-specific formatting
of data to be saved

Miscellany

formfield() returns a form field class suitable for this
field type

value_to_string() converts the field value to a
string for serializers

Writing your own

From scratch: subclass django.db.models.Field

Use django.db.models.SubfieldBase as the
metaclass

Override any methods you need

Full documentation: http://docs.djangoproject.com/en/dev/
howto/custom-model-fields/

http://docs.djangoproject.com/en/dev/howto/custom-model-fields/
http://docs.djangoproject.com/en/dev/howto/custom-model-fields/
http://docs.djangoproject.com/en/dev/howto/custom-model-fields/
http://docs.djangoproject.com/en/dev/howto/custom-model-fields/

Writing your own

Subclassing an existing field: just do it

Override methods if you like

Or don’t

class PubDateField(models.DateField):
 pass

def get_publication_date(obj):
 opts = obj._meta
 pub_date_field = None
 for field in opts.fields:
 if isinstance(field, PubDateField):
 pub_date_field = field
 break
 return pub_date_field.value_from_object(obj)

A powerful use case

Model validation

New in Django 1.2

Three flavors: field-level, instance-level, uniqueness checks

Run the whole suite by calling a model instance’s
full_clean() method

clean_fields()

Each model field defines a clean() method

Additional validation can be added to a field in the model
definition

clean()

Instance-level validation

Called after clean_fields()

Can perform validation involving multiple fields
simultaneously

validate_unique()

Applies unique declarations on fields, unique_for_*
declarations and unique_together in Meta

Last step in the validation chain

full_clean()

Raises
django.core.exceptions.ValidationError if
instance is invalid

Must be called manually; model saving does not implicitly
validate

Inheritance

Abstract/concrete

DB-level

Python-level

Abstract models

Create an abstract model by declaring abstract =
True in Meta

No database table created

Subclasses, if not abstract, will generate table with both
their own and the parent’s fields

Subclasses can subclass and override parent’s Meta

Abstract models

Meta cannot declare some attributes (db_table, for
example)

Special interpolation syntax for related_name

Use cases

Common field set (e.g., title, publication date, author, etc.)

Common methods

Common Meta declarations

Common custom managers

DB-level inheritance

No special mechanism: just subclass the model you want to
inherit from

Can’t directly subclass parent’s Meta, but can override
with new declarations

Can add new managers (parent’s managers are not
inherited)

DB-level inheritance

Always implemented as multi-table

Subclass gets a table with implicitly-created one-to-one
relation to parent (specify a OneToOneField with
parent_link=True to manually control this)

Parent/child relation can be traversed like any one-to-one
relation

Use cases

Logical “is-a” relationships: a Restaurant “is-a”
Place

And then only maybe (inheritance isn’t a great pattern)

Python-level inheritance

Create a “proxy” subclass: proxy = True in Meta

Will use parent’s database table

Can add/override declarations in Meta

Can add new managers (parent’s will be inherited as well)

Python-level inheritance

Must have exactly one non-abstract parent

Can have any number of abstract parents…

…but abstract parents cannot define fields

Use cases

Adding methods to existing models

Adding managers or changing Meta behavior

Far better solution than monkeypatching

General caveats

Querying a model always returns instances of that model,
never instances of parents/children

Subclasses can never override parent field definitions

Abstract classes cannot be queried

First parent to define a name “wins”

When in doubt, don’t use
inheritance

Miscellaneous ORM features

Unmanaged models

Declare managed = False in Meta

Django doesn’t attempt to create or maintain a DB table

Django doesn’t add an automatic primary-key field

Django doesn’t attempt to create many-to-many join tables

Useful for wrapping existing tables or, more often, DB-level
views

Generic relations

Live in
django.contrib.contenttypes.generic

Require django.contrib.contenttypes installed

Allow relation to any instance of any model

How it works

Add a ForeignKey to
django.contrib.contenttypes.models.Cont
entType

Add a field which can hold a primary-key value (usually
IntegerField or TextField)

Add a GenericForeignKey specifying the above field
names as arguments

class Tag(models.Model):
 content_type = models.ForeignKey(ContentType)
 object_id = models.TextField()
 object = generic.GenericForeignKey(‘content_type’,
 ‘object_id’)
 tag = models.CharField(max_length=255)

>>> jacob = User.objects.get(username=‘jacob’)
>>> t = Tag(object=jacob, tag=‘bdfl’)
>>> t.save()
>>> t.object
<User: jacob>

How it works

How it works

The ContentType relation is used to determine the
model class

Then a primary-key lookup is done against that model

Querying by generic relation always requires both values
explicitly: GenericForeignKey fields are not legal in
filter(), get(), etc.

Reverse generic relations

Declare on the model class you’ll “point” to

Use generic.GenericRelation

Sets up a reverse relationship attribute for easy queries

Q expressions

django.db.models.Q

Use normal field-lookup syntax

Legal anywhere field-lookup syntax is (but must come as
positional arguments)

Combine with logical operators & and |

Negate with logical ~

Allow complex lookups, reuse of query fragments

F expressions

django.db.models.F

Takes a field name, becomes a reference to that field name

Usable as a lookup value in queries

Allows self-referential or field-comparing queries

extra()

Allows a bit of raw SQL in an otherwise-normal query

Can add extra attributes to returned model instances

Only occasionally useful

Natural keys

Define the method natural_key() on the model class

Should return an iterable

Example: ContentType returns app label/model name

Natural keys

Serializers will use a natural key if the model defines it

ContentType and Permission both have custom
managers which do lookups by natural keys

Normal querying
Permission.objects.get(code_name=‘change’,
 content_type__app_label=‘auth’,
 content_type__model=‘user’)

Using natural key
Permission.objects.get_by_natural_key(‘change’,
 ‘auth’, ‘user’)

Natural keys

Questions?

The forms library

Major parts

Forms

Fields

Widgets

Form-generation utilities

Media support

Widgets

Low-level display and parsing

Know how to render HTML

Know how to pull data out of a submission

Widgets

One for each type of HTML form control: Textarea,
PasswordInput, etc.

Can also bundle arbitrary media (CSS, JavaScript) to
include and use for display

Important methods

render(self, name, value, attrs=None)

Returns HTML (as a Unicode string) to represent the widget

attrs is a dict of HTML attributes to render

value is not guaranteed to be valid!

Important methods

value_from_datadict(self, data, files,
name)

Return the value input into this widget’s HTML control

data and files are the POST or GET and FILES dicts
from an HTTP request

Important methods

id_for_label(self, id_)

Returns an HTML ID to use in tying the widget to a label
element.

Important methods

build_attrs(self, extra_attrs=None,
**kwargs)

Combines the widget instance’s existing attributes with any
extra attributes specified by other means

Not useful to override, but useful in other methods (e.g.,
render())

MultiWidget

Special-purpose widget, provides a wrapper around
multiple other widgets

Example: combining date and time widgets for a datetime
input

MultiWidget

value argument to render() can be a list of values,
one per wrapped widget

Or a single value; decompress() will be called to
unpack into multiple values

Example: SplitDateTimeWidget.decompress()
turns a datetime.datetime into separate date and
time values

Fields

Represent data type and validation constraints

Have associated widgets for rendering

Can perform validation and return values of appropriate
types

Can be arbitrarily specialized (or generic)

Changes in 1.2

Model-level validation implemented

Also changed internals of form field validation

Backwards-compatible: old-style validation still works, but
new-style is better

Old-style field validation

clean(self, value)

If value is valid, return it

If not, raise django.forms.ValidationError with
an appropriate message

New-style field validation

Three-step process

Convert value to appropriate Python type

Run field’s own validation

Run attached validators

django.core.exceptions.ValidationError
(django.forms.ValidationError is an alias)

Converting field values

to_python(self, value)

Converts value to the appropriate Python type for the field
and returns it

Raises ValidationError if the value can’t be
converted

Field-level validation

validate(self, value)

value has already been converted by to_python()

If value is valid, do nothing

If not, raise ValidationError

Validators

Additional validation constraints, can be arbitrarily attached
at any time

All validators attached to a field will be run during
validation

Validators

A validator is a callable which takes a single argument
(value)

Raises ValidationError if invalid

Built-in validators in django.core.validators

def require_pony(value):
 if ‘pony’ not in value:
 raise ValidationError(“A pony is required”)

In a form:
pony = models.CharField(validators=[require_pony])

Validators

Validators on a field

run_validators(self, value)

Iterates over self.validators, calling each

Traps ValidationError to collect error messages

Raises a new ValidationError, with all error
messages, if needed

Choosing a validation
approach

to_python()

When the validation constraint is tied to the data type

Most commonly: requiring a number

validate()

When the constraint is intrinsic to the field type

Choice-based fields usually need to do this

Validators

Any other type of validation

Most of the time you can re-use a built-in

If not, still less code than a custom field

Don’t write new code using
clean() on a field class

Error messages

For custom validation, supply your own

raise ValidationError(“No you can’t have a pony”)

Error messages

Each field class also defines standard error messages

These are combined with any additional messages passed
when a field instance is created

Stored in the attribute error_messages (a dictionary)
on the instance

Standard keys: invalid, required (fields can define
others)

error_messages = {
 ‘invalid’: “No you can’t have a pony”,
 ‘required’: “You must supply your own pony”,
}

pony = forms.CharField(error_messages=error_messages)

Error messages

Fields and widgets

Each field defines two default widget classes

widget is the standard widget

hidden_widget is used for a hidden field

Can be overridden per-instance with the keyword argument
widget

Fields and widgets

widget_attrs(self, widget)

Given a widget instance, return attributes which should be
applied

Other important bits

Keyword arguments when instantiating a field

required (boolean)

label (used as HTML label element)

help_text (additional longer explanation of field’s
requirements)

Fields for models

ModelChoiceField and
ModelMultipleChoiceField

Correspond to ForeignKey/OneToOneField and
ManyToManyField

Accept a QuerySet from which choices are drawn

Return the chosen object(s)

MultiValueField

Like MultiWidget, “wraps” multiple fields as a single
logical unit

MultiWidget has a decompress() method,
MultiValueField has compress()

Standard example: SplitDateTimeField

Localization (pre-1.2)

Date- and time-based fields can be localized

Pass the keyword argument input_formats

List of time.strptime format strings

Or specify in settings: DATE_INPUT_FORMATS,
DATETIME_INPUT_FORMATS and
TIME_INPUT_FORMATS

Localization changes

New in Django 1.2: locale support includes localized data
formats

django.utils.formats

Dates, times, number formatting, calendaring

Form fields automatically pull this from active locale

Forms

Pull everything together

Fields

Validation

Error handling

Rendering

BaseForm

Base class for all forms

Default field set for each class stored in the dictionary
base_fields

__init__() sets up the dictionary fields, unique to
each instance

base_fields vs. fields

Altering base_fields changes every instance of that
form class

Altering fields changes only that specific instance

base_fields = {
 ‘name’: forms.CharField(max_length=255),
 ‘email’: forms.EmailField(),
 ‘message’: forms.CharField(widget=forms.Textarea),
}

ContactForm = type(‘ContactForm’,
 (forms.BaseForm,),
 {‘base_fields’: base_fields})

Now you can use it...
contact_form = ContactForm()

Building a form the hard way

Form

Declare fields the same way as on models

Uses a metaclass
(django.forms.DeclarativeFieldsMetaclass) to
turn this into the base_fields dictionary

class ContactForm(forms.Form):
 name = forms.CharField(max_length=255)
 email = forms.EmailField()
 message = forms.CharField(widget=forms.Textarea)

Building a form the easy way

Binding data

Instantiate the form class with some data

form = SomeForm(data=request.POST)

Bound fields

A form with data wraps its fields in BoundField
instances

Each BoundField has a field instance, a reference to the
form, and the field’s name within the form

Iterating a form instance yields the BoundField
instances

Form validation

Call the form instance’s is_valid() method

Short-circuit: an unbound form is never valid

How form validation works

Fields are validated (_clean_fields())

Form as a whole is validated (_clean_form())

If valid, the form instance gets an attribute called
cleaned_data

If not, an attribute called errors

_clean_fields()

Loops over self.fields

Field’s widget.value_from_datadict() retrieves
the data

Field’s clean() called

Custom validation on the form is called

Custom validation

Method on the form, named clean_<fieldname>()

Has access to form’s cleaned_data

Not called if the field’s own clean() already raised a
validation error

_clean_form()

Calls form’s clean() method

Implement clean() to do form-level validation
(comparing multiple fields, etc.)

Can access cleaned_data

Field values not guaranteed to be in there, though

Form-level errors

Raised by form’s clean()

Special key in errors dictionary: __all__

Accessible via non_field_errors()

Errors

Stored in an instance of
django.forms.util.ErrorDict

Values in an ErrorDict are instances of
django.forms.util.ErrorList

Both ErrorDict and ErrorList know how to print
themselves as HTML

Form display

Default string representation of a form instance is as an
HTML table (as_table())

Also available: as_ul(), as_p()

as_table() and as_ul() do not output the containing
table or list element

None of these output wrapping form element or submit
buttons

Form display

_html_output()

Arguments are strings with placeholders

Appropriate field attributes and error messages
interpolated in

Fine-tuning display

Iterate over the form, get BoundField instances (in order
of definition)

Or use dictionary-style access to the form to get specific
(bound) field instances

Fun with BoundField

By default, uses the field’s defined widget

as_text() to get <input type=”text”>

as_textarea() to get <textarea>

as_hidden() to get <input type=”hidden”>

as_widget() to get whatever widget you want

Other useful display tricks

is_multipart() tells whether you need to handle file
uploads

visible_fields() gives all non-hidden fields

hidden_fields() gives all hidden fields

Forms for models

ModelForm

Base class is
django.forms.models.BaseModelForm

django.forms.ModelForm uses metaclass
django.forms.models.ModelFormMetaclass

ModelFormMetaclass

Parses the Meta declaration

Turns it into an instance of
django.forms.models.ModelFormOptions

Stores it as the attribute _meta of the form class

ModelFormOptions

Stores model class, fields to include and fields to exclude

New in Django 1.2: stores dictionary of field names and
widget instances to override default widgets

Mapping model fields

Each model field class defines a method formfield()

Override by defining the method
formfield_callback() on the form class

formfield_callback()

Receives the model field class and any defined widget from
the form class

Must return an instance of a form field class

Getting field values

django.forms.models.model_to_dict()

Uses model field’s value_from_object() method

Special-case handling for ManyToManyField

Validation

Uses model’s own validation routines

Excludes model fields not represented in the form

Excludes model fields which already have form-level errors

Saving

django.forms.models.save_instance() and
django.forms.models.construct_instance()

Uses model fields’ save_form_data() method

Defers file-based fields until other fields have been set up
(to allow dynamic upload_to based on other field
values)

Form media

The Media class

django.forms.widgets.Media

Two attributes store information about media to include

CSS

Stored in the attribute css, which is a dictionary

Keys are CSS media names (all, screen, etc.)

Values are paths to stylesheets

CSS

Handled by Media.add_css()

Uses setdefault and a check against existing values to
avoid duplicates

JavaScript

Stored in the attribute js, which is a tuple

Items are paths to JavaScript files

JavaScript

Handled by Media.add_js()

Does checking against existing declarations to avoid
duplicates

Bundling media

Works on widget classes and form classes

Define an inner class named Media, with the appropriate
attributes

class MyWidget(forms.TextInput):
 class Media:
 js = (‘foo.js’, ‘bar.js’)

Example

How it works

Widgets have a metaclass
(django.forms.widgets.MediaDefiningClass)
which parses the Media declaration

For forms, DeclarativeFieldsMetaclass does the
same

Media paths

Can be full URLs, including domain

Can be relative URLs starting with ‘/’

Can be file names; settings.MEDIA_URL will be
prepended to generate the full URL

Media.absolute_path() has the logic for this

Rendering

String representation of a Media instance is the correct
HTML

Dictionary access works: some_form.media[‘js’]

Rendering

render() spits out all media for the instance

render_css() does just the CSS

render_js() does just the JavaScript

__unicode__() just calls render()

__getitem__() calls the appropriate rendering method

Media and inheritance

By default, a subclass of an existing widget or form inherits
the parent’s media definitions

Specify extend = False in the subclass’ Media class
to change this

Combining media

Simply add media instances

combined = form1.media + form2.media

Duplicate-checking is applied

You can use Media outside of
forms

from django.forms.widgets import MediaDefiningClass

class MyClass(object):
 __metaclass__ = MediaDefiningClass

Now you can define an inner ‘Media’ class on
subclasses

class MyClassWithMedia(MyClass):
 class Media:
 css = {‘all’: ‘foobar.css’}

Make your own

Media isn’t really designed
for direct instantiation

Questions?

The template system

Major components

Templates

Tag and filter libraries

Loaders

Template loaders

Locate templates (wherever they might be)

Compile raw template source into a Template instance

Base class:
django.template.loader.BaseLoader

Loading a template

load_template(self, template_name,
template_dirs=None)

Returns a 2-tuple: (Template instance, origin)

load_template()

Default implementation calls
load_template_source()

Most custom loaders should override that method

load_template_source()

Filesystem loader searches TEMPLATE_DIRS and returns
the file path as the origin

App directories loader searches for templates
directories in applications, returns the file path as origin

Egg loader does the same, but inside eggs (and returns an
egg name as the origin)

Other template languages

A “template” is really just an object defining the method
render(self, context)

Write a wrapper which implements that method

And a loader which knows how to apply it

The Template class

django.template.Template

Compiled from a string source

Ultimate result is a wrapper around a list of
django.template.Node instances

Compiling a template

django.template.Lexer breaks the source string
into appropriate tokens (django.template.Token)

django.template.Parser turns the tokens into
Node instances and returns the NodeList

Lexing

Regex-based: django.template.tag_re

Lexer uses defined constants to identify known syntax
(tags, variables, etc.)

Instantiate with source string and origin;
Lexer.tokenize() returns list of Token instances

Tokens

django.template.Token

Stores type and contents

Types are text, variable, comment and block

Token.split_contents() breaks up contents into a
list for further use

The parser

django.template.Parser

Instantiate with a list of tokens

parse() turns the tokens into a NodeList

Node

django.template.Node

Everything in the template becomes an instance of a Node
subclass

Node must define the method render() which takes a
Context instance

NodeList

A list of Node instances

Renders by iterating its nodes, calling render() on each
and concatenating the results

Mapping tokens to nodes

Parser maps plain text and variables to TextNode and
VariableNode

Comments are skipped

All other tokens treated as tags and looked up by name

Handling tags

Parser has a dictionary, tags, mapping tag names to
compilation functions

Loading new tag libraries updates this dictionary

No namespacing (yet)! Second tag with same name will
overwrite the first

Built-in tags and filters

django.template.builtins is the list of default
libraries to load

django.template.add_to_builtins() can add
new ones

By default, loads django.template.defaulttags
and django.template.defaultfilters

Tag loading

Rewritten for Django 1.2

Previously, templatetags module in an app was added
to django.templatetags.__path__

Now, importlib is used to collect all modules which
provide tag libraries

Tag loading

Keyed by module name

First location to have <app>.templatetags.<name>
wins

Parser tricks

Tag compilation functions have access to the parser

Can parse forward, back up, look for specific tags

parse()

Optional argument parse_until

List of tag names

Continues parsing until a token of that name is reached

Parser.delete_first_token() will remove that
token

next_token()

Returns the next token in the template

Used by for/empty, if/else, etc.

skip_past()

Takes a tag name

Parses to just past the next tag matching that name

Example: endcomment

Debugging

DEBUG = True swaps out the lexer and parser

django.template.debug.DebugParser and
django.template.debug.DebugLexer

Other parsing tricks

Node classes can set must_be_first = True (e.g.,
for extends)

Overridable enter_command and exit_command
(debugging parser uses these)

Variables

django.template.VariableNode

Wraps an instance of
django.template.FilterExpression

FilterExpression

Splits out variable name and any filters

Checks that all filter names are valid

Wraps variable in a template.Variable instance if
possible

Variable

Actually resolves the variable in a given Context

Also understands gettext syntax and will apply
translation when needed

Context

Behaves like a dictionary

Is actually a stack of dictionaries

Fall-through lookup semantics: checks from top to bottom
looking for variables

Context tricks

push() adds a new dictionary on the top of the stack

New variables are added to the topmost dictionary

pop() removes the topmost dictionary

RenderContext

New in 1.2: thread-safe storage of node rendering state

Only the topmost dictionary is checked for variable
resolution

Each Context has an attached RenderContext

New dictionary pushed on top at start of render(),
popped at end

Autoescaping

By default, all variables are escaped

safe filter turns this off case-by-case

autoescape tag turns it on/off for sections of a template

autoescape attribute of Context controls

Questions?

Request/response processing

Request handlers

Base class
django.core.handlers.base.BaseHandler

Implement the request/response pipeline

One subclass for mod_python, one for WSGI

Request handlers

Handler’s __call__() is the entry point for Django

Loads middleware

Initializes HttpRequest object

Calls handler’s get_response()

Middleware loading

Handler’s load_middleware() method

Populates attributes containing request, response, view and
exception middleware classes

HttpRequest

Base class django.http.HttpRequest

One subclass for mod_python, one subclass for WSGI

mod_python: _req is the raw request object

WSGI: environ is the original WSGI environ

get_response()

Applies request middleware

Resolves URL

Applies view middleware

Calls view

Applies response middleware

URL resolution

django.core.urlresolvers.set_urlconf()
sets the (thread-local) URL configuration

django.core.urlresolvers.RegexURLResolver
is the class used to perform resolution

RegexURLResolver

Instantiate with string name of a root URLconf

Call resolve() with a URL path to resolve

Returns tuple of (view, positional args, keyword args)

Or raises
django.core.urlresolvers.Resolver404

RegexURLPattern

Represents a single URL pattern

resolve() method takes a path

Returns (view, args, kwargs) tuple if it matches

Resolution errors

Resolver404 is a subclass of
django.http.Http404

Handler will detect this and call resolver’s
resolve404() method

Works with Http404 raised from view, too

404 handlers

Specified by root URLconf’s handler404 attribute

Default is
django.views.defaults.page_not_found

Views

Three requirements to qualify as a Django view

Callable

Accepts an HttpRequest as first positional argument

Returns an HttpResponse or raises an exception

Simple views

Just Python functions

95% of views “in the wild”

Class-based views

Class whose instances define __call__()

Various proposals for standardization

http://www.slideshare.net/simon/classbased-views-with-
django

http://www.slideshare.net/simon/classbased-views-with-django
http://www.slideshare.net/simon/classbased-views-with-django
http://www.slideshare.net/simon/classbased-views-with-django
http://www.slideshare.net/simon/classbased-views-with-django

Class-based views

Turn functionality into methods

get_template(), get_context(), etc.

To change behavior, subclass and override

Class-based views

One object can also be multiple views

Can provide its own URL patterns too

Admin does this

HttpResponse

Lives in django.http

No gateway-specific subclasses

Handler converts HttpResponse to gateway-appropriate
response mechanism

HttpResponse

Subclasses for HTTP status codes

301, 302, 304, 400, 403, 404, 405, 410, 500

Easy to write your own: override status_code

Handling errors

Most exceptions will cause exception middleware to be
applied

SystemExit is not caught

Exceptions raised by exception middleware or 404 handler
not apply exception middleware

Handling errors

Handler’s handle_uncaught_exception()

Uses root URLconf’s handler500

Default error view:
django.views.defaults.server_error

Deliberately uses empty Context

Middleware

Middleware methods can modify request/response and
return None

Or return an HttpResponse directly (short-circuits all
other request processing)

Or raise an exception (goes straight to error handling)

Middleware calls

process_request() called before URL resolution

process_view() called after URL resolution

process_response() called after successful
get_response()

Exceptions can shortcut processing

Request signals

django.core.signals.request_started

django.core.signals.request_finished

django.core.signals.got_request_exception

Questions?

The admin

AdminSite

Represents an admin interface

Knows which models and actions are registered with it

Can have multiple instances active in a single install

AdminSite

urls delegates to get_urls()

Auth checks (login, logout, etc.) implemented as methods

ModelAdmin

Provides admin options

And acts as a set of class-based views

Also uses MediaDefiningClass metaclass

ModelAdmin

Class attributes for easy customization

Overridable templates

Overridable forms

Overridable form fields

Overriding templates

add_form_template

change_form_template

change_list_template

delete_confirmation_template

object_history_template

Overriding forms

Set form on the ModelAdmin

Or override get_form()

Or override render_change_form() to control form
rendering

Admin forms

django.contrib.admin.helpers.AdminForm
implements fieldsets

django.contrib.admin.widgets contains
special-case widgets for certain fields

Overriding fields

Set fields or exclude

To control specific fields, define a custom form class

Or define methods

Overriding fields

formfield_for_dbfield()

formfield_for_choice_field()

formfield_for_foreignkey()

formfield_for_manytomany()

Permission control

has_add_permission()

has_change_permission()

has_delete_permission()

get_model_perms()

queryset()

Logging

log_addition()

log_change()

construct_change_message()

log_deletion()

Views

add_view()/change_view()/delete_view()/
history_view()

response_add()/response_change()

ChangeList

django.contrib.admin.views.main.ChangeL
ist

Last bit of truly “legacy” code in admin

ModelAdmin.get_changelist() allows overriding

Questions?

