
Developing reusable apps

James Bennett

PyCon Chicago, March 15, 2008

The fourfold path

Do one thing, and do it well.

Don’t be afraid of multiple apps.

Write for flexibility.

Build to distribute.

1

“
”

Do one thing, and do it well.

-- The UNIX philosophy

Application ==
encapsulation

Case study: user
registration

Features

User fills out form, inactive account
created.

User gets email with link, clicks to activate.

And that’s it.

Some “simple” things
aren’t so simple.

Approach features
skeptically

Should I add this
feature?

What does the application do?

Does this feature have anything to do with
that?

No? Guess I shouldn’t add it, then.

Top feature request in
django-registration:

User profiles

“
”

What does that have to do with user
registration?

-- Me

The solution?

django-profiles

Add profile

Edit profile

View profile

And that’s it.

2

Don’t be afraid of
multiple apps

The monolith mindset

The “application” is the whole site

Re-use is often an afterthought

Tend to develop plugins that hook into the
“main” application

The Django mindset

Application == some bit of functionality

Site == several applications

Tend to spin off new applications liberally

Should this be its own
application?

Is it orthogonal to whatever else I’m doing?

Will I need similar functionality on other
sites?

Yes? Then I should break it out into a
separate application.

Case study: blogging

I wanted a blog

Entries and links

Tagging

Comments with moderation

Contact form

“About” page

Etc., etc.

I ended up with

A blog app (entries and links)

A third-party tagging app

contrib.comments + moderation app

A contact-form app

contrib.flatpages

Etc., etc.

Advantages

Don’t keep rewriting features

Drop things into other sites easily

urlpatterns += (‘’,
 (r’^contact/’, include(‘contact_form.urls’)),
)

But what about...

Site-specific needs

Site A wants a contact form that just
collects a message.

Site B’s marketing department wants a
bunch of info.

Site C wants to use Akismet to filter
automated spam.

3

Write for flexibility

Common sense

Sane defaults

Easy overrides

Don’t set anything in stone

Form processing

Supply a form class

But let people specify their own if they
want

class SomeForm(forms.Form):
 ...

def process_form(request, form_class=SomeForm):
 if request.method == ‘POST’:
 form = form_class(request.POST)
 ...
 else:
 form = form_class()
 ...

Specify a default template

But let people specify their own if they
want

Templates

def process_form(request, form_class=SomeForm,
 template_name=’do_form.html’):
 ...
 return render_to_response(template_name,
 ...

You want to redirect after successful
submission

Supply a default URL

But let people specify their own if they
want

Form processing

def process_form(request, form_class=SomeForm,
 template_name=’do_form.html’,
 success_url=’/foo/’):
 ...
 return HttpResponseRedirect(success_url)

Provide a URLConf in the application

Use named URL patterns

Use reverse lookups: reverse(),
permalink, {% url %}

URL best practices

4

Build to distribute

So you did the tutorial

from mysite.polls.models import
Poll

mysite.polls.views.vote

include(‘mysite.polls.urls’)

mysite.mysite.bork.bork.bork

Project coupling kills
re-use

What is a “project”?

A settings module

A root URLConf module

And that’s it.

ljworld.com

worldonline.settings.ljworld

worldonline.urls.ljworld

And a whole bunch of reused apps

What reusable apps
look like

Single module directly on Python path
(registration, tagging, etc.)

Related modules under a package
(ellington.events,
ellington.podcasts, etc.)

No project cruft whatsoever

And now it’s easy

You can build a package with distutils
or setuptools

Put it on the Cheese Shop

People can download and install

General best practices

Be up-front about dependencies

Write for Python 2.3 when possible

Pick a release or pick trunk, and document
that

But if you pick trunk, update frequently

Templates are hard

Providing templates is a big “out of the
box” win

But templates are hard to make portable
(block structure/inheritance, tag libraries,
etc.)

I usually don’t do
default templates

Either way

Document template names

Document template contexts

Be obsessive about
documentation

It’s Python: give stuff docstrings

If you do, Django will generate
documentation for you

And users will love you forever

Recap:

Do one thing, and do it well.

Don’t be afraid of multiple apps.

Write for flexibility.

Build to distribute.

Good examples

django-tagging (Jonathan Buchanan,
http://code.google.com/p/django-
tagging/)

django-atompub (James Tauber, http://
code.google.com/p/django-atompub/)

Search for “django” on code hosting sites

http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/

More information

django-hotclub (http://
groups.google.com/group/django-
hotclub/)

Jannis Leidel’s django-packages (http://
code.google.com/p/django-
reusableapps/)

Django sprint at PyCon

http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/

Questions?

Photo credits

"Purple Sparkly Pony Ride" by ninjapoodles, http://www.flickr.com/photos/ninjapoodles/
285048576/

“Stonehenge #2” by severecci, http://www.flickr.com/photos/severecci/129553243/

“sookiepose” by 416style, http://www.flickr.com/photos/sookie/41561946/

"The Happy Couple" by galapogos, http://www.flickr.com/photos/galapogos/343592116/

http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/galapogos/343592116/
http://www.flickr.com/photos/galapogos/343592116/

