django

James Bennett

PyCon Chicago, March 15, 2008

The fourfold path

=» Do one thing, and do it well.

=» Don’t be afraid of multiple apps.
-» Write for flexibility.

=» Build to distribute.

I/}

Do one thing, and do it well.

"

-- The UNIX philosophy

Application ==
encapsulation

Case study: user
registration

Django snippets: Sign up

nu _ m €3 http: / /www.djangosnippets.org/accounts /register/ O E8 B Q~ Inquisitor ‘

djangosnippets

Log in or register About

By author Bylanguage Bytag Highest-rated Most bookmarked

Sign up

Username: Fill out t.he form to the left (all fleIQS
are required), and your account will
be created; you'll be sent an email
with instructions on how to finish

Emall address: your registration.

Password:

Password (type again to catch any typos):

| have read and agree to the Terms of Service: [)

[Register)

Snippets About

By author Powered by Diango.

By language Learn more about this -
By tag site. .
Hinohest-rated Renad tha FAQ. 1

Features

=>» User fills out form, inactive account
created.

=» User gets email with link, clicks to activate.

=» And that’s it.

Some “simple” things
aren’'t so simple.

Approach features
skeptically

Should | add this
feature?

=» What does the application do?

=» Does this feature have anything to do with
that?

<> No? Guess | shouldn’t add it, then.

Top feature requestin
django-registration:
User profiles

I/}

WHhat does that have to do with user

registration?

-- Me

AR
No, You Can’t Have a Pony

{7

L '(lri U =

-
. -
NOT YOURS 5 .

The solution?

django-profiles

=» Add profile
- Edit profile
-» View profile
=» And that's it.

7. v .‘. ,.\

o e e
S - -

'-—" .f‘._“'-f ;‘wgw " e { ".Q*

/ W Th el
, % s \'li‘; :d

o il | P

-t

L e any

Don’t be afraid of
multiple apps

The monolith mindset

=» The “application” is the whole site
=» Re-use is often an afterthought

=» Tend to develop plugins that hook into the
“main” application

The Django mindset

=» Application == some bit of functionality
= Site == several applications

-» Tend to spin off new applications liberally

Should this be its own
application?

- Is it orthogonal to whatever else I'm doing?

=» Will | need similar functionality on other
sites?

=» Yes? Then | should break it out into a
separate application.

Case study: blogging

| wanted a blog

=» Entries and links

=» Tagging

- Comments with moderation
-» Contact form

=» “About” page

= Etc., etc.

| ended up with

- A blog app (entries and links)

=» A third-party tagging app
=»contrib.comments + moderation app
=» A contact-form app

=»contrib. flatpages

= Etc., etc.

Advantages

=» Don’t keep rewriting features

=» Drop things into other sites easily

urlpatterns += (‘’,
(r'~contact/’, include(‘contact form.urls’)),

)

But what about...

Site-specific needs

-» Site A wants a contact form that just
collects a message.

= Site B's marketing department wants a
bunch of info.

=) Site C wants to use Akismet to filter
automated spam.

Write for flexibility

Common sense

=» Sane defaults
=» Easy overrides

=» Don’t set anything in stone

Form processing

=» Supply a form class

=» But let people specify their own if they
want

class SomeForm(forms.Form):

def process form(request, form class=SomeForm):
1f request.method == ‘POST’:
form = form class(request.POST)

else:
form = form class()

Templates

=» Specify a default template

=» But let people specify their own if they
want

def process form(request, form class=SomeForm,
template name="do form.html’):

return render to response(template name,

Form processing

=» You want to redirect after successful
submission

=» Supply a default URL

=» But let people specify their own if they
want

def process form(request, form class=SomeForm,
template name="do form.html’,
success _url='/foo/’):

return HttpResponseRedirect(success url)

URL best practices

=» Provide a URLConf in the application
=» Use named URL patterns

= Use reverse lookups: reverse(),
permalink, {% url %}

Build to distribute

So you did the tutorial

= from mysite.polls.models import
Poll

=>mysite.polls.views.vote
=<»1nclude(‘mysite.polls.urls’)
=>mysite.mysite.bork.bork.bork

Project coupling kills
re-use

What is a "project”?

=» A settings module
> A root URLConf module
=» And that’s it.

ljworld.com

=<>worldonline.settings.ljworld
=>worldonline.urls.ljworld

=» And a whole bunch of reused apps

What reusable apps
look like

=» Single module directly on Python path
(registration, tagging, etc.)

-» Related modules under a package
(ellington.events,
ellington.podcasts, etc.)

=» No project cruft whatsoever

And now it's easy

=» You can build a package withdistutils
or setuptools

=» Put it on the Cheese Shop

=» People can download and install

General best practices

=» Be up-front about dependencies
=» Write for Python 2.3 when possible

=» Pick a release or pick trunk, and document
that

=» But if you pick trunk, update frequently

Templates are hard

=» Providing templates is a big “out of the
box” win

-» But templates are hard to make portable
(block structure /inheritance, taqg libraries,
etc.)

| usually don'tdo
default templates

Either way

=» Document template names

=» Document template contexts

Be obsessive about
documentation

= It's Python: give stuff docstrings

= If you do, Django will generate
documentation for you

=» And users will love you forever

Recap:

=» Do one thing, and do it well.

=» Don’t be afraid of multiple apps.
-» Write for flexibility.

=» Build to distribute.

Good examples

- django-tagging (Jonathan Buchanan,
http: / /code.google.com/p/django-

tagging/)

- django-atompub (James Tauber, http: //
code.google.com/p/django-atompub /)

=» Search for “django” on code hosting sites

http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/

More information

- django-hotclub (http: //
groups.qgoogle.com /qroup /django-
hotclub/)

= Jannis Leidel’s django-packages (http: //

code.google.com/p/django-
reusableapps/)

=» Django sprint at PyCon

http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/

Questions?

Photo credits

< "Purple Sparkly Pony Ride" by ninjapoodles, http: / /www.flickr.com /photos /ninjapoodles/
285048576/

< “Stonehenge #2" by severecci, http: / /www.flickr.com /photos /severecci /129553243 /

< “sookiepose” by 416style, http: / /www.flickr.com /photos/sookie /41561946 /

< "The Happy Couple" by galapogos, http: / /www.flickr.com /photos/galapogos /343592116 /

http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/galapogos/343592116/
http://www.flickr.com/photos/galapogos/343592116/

