
Writing reusable applications

James Bennett

DjangoCon, Mountain View, CA,
September 6, 2008

The extended remix!

The fourfold path

Do one thing, and do it well.

Don’t be afraid of multiple apps.

Write for flexibility.

Build to distribute.

1

“
”

Do one thing, and do it well.

-- The UNIX philosophy

Application ==
encapsulation

Keep a tight focus

Ask yourself: “What does this application
do?”

Answer should be one or two short
sentences

Good focus

“Handle storage of users and authentication
of their identities.”

“Allow content to be tagged, del.icio.us
style, with querying by tags.”

“Handle entries in a weblog.”

Bad focus

“Handle entries in a weblog, and users who
post them, and their authentication, and
tagging and categorization, and some flat
pages for static content, and...”

The coding equivalent of a run-on sentence

Warning signs

A lot of very good Django applications are
very small: just a few files

If your app is getting big enough to need
lots of things split up into lots of modules, it
may be time to step back and re-evaluate

Warning signs

Even a lot of “simple” Django sites
commonly have a dozen or more
applications in INSTALLED_APPS

If you’ve got a complex/feature-packed
site and a short application list, it may be
time to think hard about how tightly-
focused those apps are

Case study: user
registration

Features

User fills out form, inactive account created

User gets email with link, clicks to activate

And that’s it

User registration

Different sites want different information

Different types of users

Different signup workflow

Etc., etc.

Some “simple” things
aren’t so simple.

Approach features
skeptically

Should I add this
feature?

What does the application do?

Does this feature have anything to do with
that?

No? Guess I shouldn’t add it, then.

Top feature request in
django-registration:

User profiles

“
”

What does that have to do with user
registration?

-- Me

The solution?

django-profiles

Add profile

Edit profile

View profile

And that’s it.

2

Don’t be afraid of
multiple apps

The monolith mindset

The “application” is the whole site

Re-use is often an afterthought

Tend to develop plugins that hook into the
“main” application

Or make heavy use of middleware-like
concepts

The Django mindset

Application == some bit of functionality

Site == several applications

Tend to spin off new applications liberally

Django encourages this

Instead of one “application”, a list:
INSTALLED_APPS

Applications live on the Python path, not
inside any specific “apps” or “plugins”
directory

Abstractions like the Site model make you
think about this as you develop

Should this be its own
application?

Is it completely unrelated to the app’s
focus?

Is it orthogonal to whatever else I’m doing?

Will I need similar functionality on other
sites?

Yes? Then I should break it out into a
separate application.

Unrelated features

Feature creep is tempting: “but wouldn’t it
be cool if...”

But it’s the road to Hell

See also: Part 1 of this talk

I’ve learned this the
hard way

djangosnippets.org

One application

Includes bookmarking features

Includes tagging features

Includes rating features

Should be about four
applications

So I wrote a book
telling people not to do

what I did

Page 210, in case you
were wondering.

Orthogonality

Means you can change one thing without
affecting others

Almost always indicates the need for a
separate application

Example: changing user profile workflow
doesn’t affect user signup workflow. Make
them two different applications.

Reuse

Lots of cool features actually aren’t specific
to one site

See: bookmarking, tagging, rating...

Why bring all this crap about code snippets
along just to get the extra stuff?

Case study: blogging

I wanted a blog

Entries and links

Tagging

Comments with moderation

Contact form

“About” page

Etc., etc.

I ended up with

A blog app (entries and links)

A third-party tagging app

contrib.comments + moderation app

A contact-form app

contrib.flatpages

Etc., etc.

Advantages

Don’t keep rewriting features

Drop things into other sites easily

Need a contact form?

urlpatterns += (‘’,
 (r’^contact/’, include(‘contact_form.urls’)),
)

And you’re done

But what about...

Site-specific needs

Site A wants a contact form that just
collects a message.

Site B’s marketing department wants a
bunch of info.

Site C wants to use Akismet to filter
automated spam.

3

Write for flexibility

Common sense

Sane defaults

Easy overrides

Don’t set anything in stone

Form processing

Supply a form class

But let people specify their own if they
want

class SomeForm(forms.Form):
 ...

def process_form(request, form_class=SomeForm):
 if request.method == ‘POST’:
 form = form_class(request.POST)
 ...
 else:
 form = form_class()
 ...

Specify a default template

But let people specify their own if they
want

Templates

def process_form(request, form_class=SomeForm,
 template_name=’do_form.html’):
 ...
 return render_to_response(template_name,
 ...

You want to redirect after successful
submission

Supply a default URL

But let people specify their own if they
want

Form processing

def process_form(request, form_class=SomeForm,
 template_name=’do_form.html’,
 success_url=’/foo/’):
 ...
 return HttpResponseRedirect(success_url)

Provide a URLConf in the application

Use named URL patterns

Use reverse lookups: reverse(),
permalink, {% url %}

URL best practices

Working with models

Whenever possible, avoid hard-coding a
model class

Use get_model() and take an app label/
model name string instead

Don’t rely on objects; use the default
manager

from django.db.models import get_model

def get_object(model_str, pk):
 model = get_model(*model_str.split(‘.’))
 return model._default_manager.get(pk=pk)

user_12 = get_object(‘auth.user’, 12)

Working with models

Don’t hard-code fields or table names;
introspect the model to get those

Accept lookup arguments you can pass
straight through to the database API

Learn to love managers

Managers are easy to reuse.

Managers are easy to subclass and
customize.

Managers let you encapsulate patterns of
behavior behind a nice API.

Advanced techniques

Encourage subclassing and use of
subclasses

Provide a standard interface people can
implement in place of your default
implementation

Use a registry (like the admin)

The API your
application exposes is

just as important as the
design of the sites

you’ll use it in.

In fact, it’s more
important.

Good API design
“Pass in a value for this argument to change
the behavior”

“Change the value of this setting”

“Subclass this and override these methods
to customize”

“Implement something with this interface,
and register it with the handler”

Bad API design

“API? Let me see if we have one of
those...” (AKA: “we don’t”)

“It’s open source; fork it to do what you
want” (AKA: “we hate you”)

def application(environ,
start_response) (AKA: “we have a
web service”)

No, really. Your
gateway interface is

not your API.

4

Build to distribute

So you did the tutorial

from mysite.polls.models import
Poll

mysite.polls.views.vote

include(‘mysite.polls.urls’)

mysite.mysite.bork.bork.bork

Project coupling kills
re-use

You have to replicate that directory
structure every time you re-use

Or you have to do gymnastics with your
Python path

And you get back into the monolithic
mindset

Why (some) projects
suck

A good “project”

A settings module

A root URLConf module

And that’s it.

Advantages

No assumptions about where things live

No tricky bits

Reminds you that it’s just another Python
module

It doesn’t even have to
be one module

ljworld.com

worldonline.settings.ljworld

worldonline.urls.ljworld

And a whole bunch of reused apps in
sensible locations

What reusable apps
look like

Single module directly on Python path
(registration, tagging, etc.)

Related modules under a package
(ellington.events,
ellington.podcasts, etc.)

No project cruft whatsoever

And now it’s easy

You can build a package with distutils
or setuptools

Put it on the Cheese Shop

People can download and install

General best practices

Be up-front about dependencies

Write for Python 2.3 when possible

Pick a release or pick trunk, and document
that

But if you pick trunk, update frequently

Templates are hard

Providing templates is a big “out of the
box” win

But templates are hard to make portable
(block structure/inheritance, tag libraries,
etc.)

I usually don’t do
default templates

Either way

Document template names

Document template contexts

Be obsessive about
documentation

It’s Python: give stuff docstrings

If you do, Django will generate
documentation for you

And users will love you forever

“
”

If the implementation is hard to explain,
it’s a bad idea. If the implementation is
easy to explain, it may be a good idea.

-- The Zen of Python

Documentation-driven
development

Write the docstring before you write the
code

Rewrite the docstring before you write the
code

And write doctests while you’re at it

Advantages

You’ll never be lacking documentation

It’ll be up-to-date

It’s a lot easier to throw away a docstring
than to throw away a bunch of code

Django will help you

Docstrings for views, template tags, etc.
can use reStructureText formatting

Plus extra directives for handy cross-
references to other components you’re
using

Recap:

Do one thing, and do it well.

Don’t be afraid of multiple apps.

Write for flexibility.

Build to distribute.

In the beginning...

There was Django.

And Ellington.

And a couple other open-source apps.

...PyCon 2007...

A few people presented/announced things
they’d developed

Sort of a watershed moment

...DjangoCon 2008

Search for “django” on Google code
hosting: 848 projects

djangosites.org lists 1,636 sites

And those are just the ones we know about
so far...

“
”

This is Django’s killer feature.

-- Me

Good examples

django-tagging (Jonathan Buchanan,
http://code.google.com/p/django-
tagging/)

django-atompub (James Tauber, http://
code.google.com/p/django-atompub/)

Search for “django” on code hosting sites

http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/

More information
django-hotclub (http://
groups.google.com/group/django-
hotclub/)

Jannis Leidel’s django-packages (http://
code.google.com/p/django-
reusableapps/)

Django Pluggables: http://
djangoplugables.com/

http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://djangoplugables.com
http://djangoplugables.com
http://djangoplugables.com
http://djangoplugables.com

Questions?

Photo credits

"Purple Sparkly Pony Ride" by ninjapoodles, http://www.flickr.com/photos/ninjapoodles/
285048576/

“Stonehenge #2” by severecci, http://www.flickr.com/photos/severecci/129553243/

“sookiepose” by 416style, http://www.flickr.com/photos/sookie/41561946/

"The Happy Couple" by galapogos, http://www.flickr.com/photos/galapogos/343592116/

http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/galapogos/343592116/
http://www.flickr.com/photos/galapogos/343592116/

