django

James Bennett

DjangoCon, Mountain View, CA,
September 6, 2008

The extended remix!

The fourfold path

=» Do one thing, and do it well.

=» Don’t be afraid of multiple apps.
-» Write for flexibility.

=» Build to distribute.

I/}

Do one thing, and do it well.

"

-- The UNIX philosophy

Application ==
encapsulation

Keep a tight focus

=» Ask yourself: “What does this application
do?”

=» Answer should be one or two short
sentences

Good focus

=» "Handle storage of users and authentication
of their identities.”

=» “Allow content to be tagged, del.icio.us
style, with querying by tags.”

=» “Handle entries in a weblog.”

Bad focus

=» “Handle entries in a weblog, and users who
post them, and their authentication, and
tagging and categorization, and some flat
pages for static content, and...”

=» The coding equivalent of a run-on sentence

Warning signs

- A lot of very good Django applications are
very small: just a few files

- If your app is getting big enough to need
lots of things split up into lots of modules, it
may be time to step back and re-evaluate

Warning signs

=» Even a lot of “simple” Django sites

commonly have a dozen or more
applicationsin INSTALLED APPS

- If you've got a complex /feature-packed
site and a short application list, it may be
time to think hard about how tightly-
focused those apps are

Case study: user
registration

Django snippets: Sign up

nu _ m €3 http: / /www.djangosnippets.org/accounts /register/ O E8 B Q~ Inquisitor ‘

djangosnippets

Log in or register About

By author Bylanguage Bytag Highest-rated Most bookmarked

Sign up

Username: Fill out t.he form to the left (all fleIQS
are required), and your account will
be created; you'll be sent an email
with instructions on how to finish

Emall address: your registration.

Password:

Password (type again to catch any typos):

| have read and agree to the Terms of Service: [)

[Register)

Snippets About

By author Powered by Diango.

By language Learn more about this -
By tag site. .
Hinohest-rated Renad tha FAQ. 1

Features

=» User fills out form, inactive account created
=» User gets email with link, clicks to activate

=» And that's it

User registration

-» Different sites want different information
-» Different types of users

= Different signup workflow

= Etc., etc.

Some “simple” things
aren’'t so simple.

Approach features
skeptically

Should | add this
feature?

=» What does the application do?

=» Does this feature have anything to do with
that?

<> No? Guess | shouldn’t add it, then.

Top feature requestin
django-registration:
User profiles

I/}

WHhat does that have to do with user

registration?

-- Me

AR
No, You Can’t Have a Pony

{7

L '(lri U =

-
. -
NOT YOURS 5 .

The solution?

django-profiles

=» Add profile
- Edit profile
-» View profile
=» And that's it.

7. v .‘. ,.\

o e e
S - -

'-—" .f‘._“'-f ;‘wgw " e { ".Q*

/ W Th el
, % s \'li‘; :d

o il | P

-t

L e any

Don’t be afraid of
multiple apps

The monolith mindset

=» The “application” is the whole site
=» Re-use is often an afterthought

=» Tend to develop plugins that hook into the
“main” application

=» Or make heavy use of middleware-like
concepts

The Django mindset

=» Application == some bit of functionality
= Site == several applications

-» Tend to spin off new applications liberally

Django encourages this

= Instead of one “application”, a list:
INSTALLED APPS

=» Applications live on the Python path, not
inside any specific “apps” or “plugins”
directory

=» Abstractions like the S1te model make you
think about this as you develop

Should this be its own

application?

= Is it completely unrelated to the app’s
focus?

= Is it orthogonal to whatever else I'm doing?

=» Will | need similar functionality on other
sites?

=» Yes? Then | should break it out into a
separate application.

Unrelated features

=» Feature creep is tempting: "but wouldn’t it
be cool if..."

=) Butit's the road to Hell
=) See also: Part 1 of this talk

|"ve learned this the
hard way

djangosnippets.org

=» One application
=» Includes bookmarking features
= Includes tagging features

= Includes rating features

Should be about four
applications

So | wrote a book

telling people not to do
what | did

Orthogonality

=» Means you can change one thing without
affecting others

=» Almost always indicates the need for a
separate application

-» Example: changing user profile workflow
doesn’t affect user signup workflow. Make
them two different applications.

Reuse

= Lots of cool features actually aren’t specific
to one site

-» See: bookmarking, tagging, rating...

=» Why bring all this crap about code snippets
along just to get the extra stuff?

Case study: blogging

| wanted a blog

=» Entries and links

=» Tagging

- Comments with moderation
-» Contact form

=» “About” page

= Etc., etc.

| ended up with

- A blog app (entries and links)

=» A third-party tagging app
=»contrib.comments + moderation app
=» A contact-form app

=»contrib. flatpages

= Etc., etc.

Advantages

=» Don’t keep rewriting features

=» Drop things into other sites easily

Need a contact form?

urlpatterns += (‘’,
(r'~contact/’, include(‘contact form.urls’)),

)

And you re done

But what about...

Site-specific needs

-» Site A wants a contact form that just
collects a message.

= Site B's marketing department wants a
bunch of info.

=) Site C wants to use Akismet to filter
automated spam.

Write for flexibility

Common sense

=» Sane defaults
=» Easy overrides

=» Don’t set anything in stone

Form processing

=» Supply a form class

=» But let people specify their own if they
want

class SomeForm(forms.Form):

def process form(request, form class=SomeForm):
1f request.method == ‘POST’:
form = form class(request.POST)

else:
form = form class()

Templates

=» Specify a default template

=» But let people specify their own if they
want

def process form(request, form class=SomeForm,
template name="do form.html’):

return render to response(template name,

Form processing

=» You want to redirect after successful
submission

=» Supply a default URL

=» But let people specify their own if they
want

def process form(request, form class=SomeForm,
template name="do form.html’,
success _url='/foo/’):

return HttpResponseRedirect(success url)

URL best practices

=» Provide a URLConf in the application
=» Use named URL patterns

= Use reverse lookups: reverse(),
permalink, {% url %}

Working with models

=» Whenever possible, avoid hard-coding a
model class

- Useget model() and take an app label/
model name string instead

=» Don’trely on objects; use the default
manager

from django.db.models import get model

def get object(model str, pk):
model = get model(*model str.split(‘.’))
return model. default manager.get (pk=pk)

user 12 = get object(‘auth.user’, 12)

Working with models

=» Don’t hard-code fields or table names;
introspect the model to get those

=» Accept lookup arguments you can pass
straight through to the database API

Learn to love managers

=» Managers are easy to reuse.

=» Managers are easy to subclass and
customize.

=» Managers let you encapsulate patterns of
behavior behind a nice API.

Advanced techniques

=» Encourage subclassing and use of
subclasses

=» Provide a standard interface people can
implement in place of your default
implementation

- Use a registry (like the admin)

The APl your

application exposes is
just as important as the
design of the sites
you'll useitin.

In fact, it's more
Important.

Good APl design

=» “Pass in a value for this argument to change
the behavior”

=» “Change the value of this setting”

=» “Subclass this and override these methods
to customize”

= “Implement something with this interface,
and register it with the handler”

Bad APl design

=» “API? Let me see if we have one of
those...” (AKA: “we don't")

- “It's open source; fork it to do what you
want” (AKA: “we hate you")

=»def application(environ,
start response) (AKA: “we have a
web service”)

No, really. Your
gateway interface is
not your API.

Build to distribute

So you did the tutorial

= from mysite.polls.models import
Poll

=>mysite.polls.views.vote
=<»1nclude(‘mysite.polls.urls’)
=>mysite.mysite.bork.bork.bork

Project coupling kills
re-use

Why (some) projects
suck

=» You have to replicate that directory
structure every time you re-use

=» Or you have to do gymnastics with your
Python path

=» And you get back into the monolithic
mindset

A good “project”

=» A settings module
=» A root URLConf module
=» And that’s it.

Advantages

=» No assumptions about where things live
=» No tricky bits

=» Reminds you that it’s just another Python
module

It doesn’'t even have to
be one module

ljworld.com

=<>worldonline.settings.ljworld
=>worldonline.urls.ljworld

=» And a whole bunch of reused apps in
sensible locations

What reusable apps
look like

=» Single module directly on Python path
(registration, tagging, etc.)

-» Related modules under a package
(ellington.events,
ellington.podcasts, etc.)

=» No project cruft whatsoever

And now it's easy

=» You can build a package withdistutils
or setuptools

=» Put it on the Cheese Shop

=» People can download and install

General best practices

=» Be up-front about dependencies
=» Write for Python 2.3 when possible

=» Pick a release or pick trunk, and document
that

=» But if you pick trunk, update frequently

Templates are hard

=» Providing templates is a big “out of the
box” win

-» But templates are hard to make portable
(block structure /inheritance, taqg libraries,
etc.)

| usually don'tdo
default templates

Either way

=» Document template names

=» Document template contexts

Be obsessive about
documentation

= It's Python: give stuff docstrings

= If you do, Django will generate
documentation for you

=» And users will love you forever

I/}

If the implementation is hard to explain,
it's a bad idea. If the implementation is
easy to explain, it may be a good idea.

"

-- The Zen of Python

Documentation-driven
development

-» Write the docstring before you write the
code

-» Rewrite the docstring before you write the
code

=» And write doctests while you're at it

Advantages

=» You'll never be lacking documentation
- It'll be up-to-date

= It's a lot easier to throw away a docstring
than to throw away a bunch of code

Django will help you

=» Docstrings for views, template tags, etc.
can use reStructureText formatting

=» Plus extra directives for handy cross-
references to other components you're
using

Recap:

=» Do one thing, and do it well.

=» Don’t be afraid of multiple apps.
-» Write for flexibility.

=» Build to distribute.

In the beginning...

=» There was Django.
=» And Ellington.

=» And a couple other open-source apps.

...PyCon 2007/...

- A few people presented /announced things
they’'d developed

< Sort of a watershed moment

...DjangoCon 2008

=» Search for “django” on Google code
hosting: 848 projects

=» djangosites.org lists 1,636 sites

=» And those are just the ones we know about
so far...

I/}

This is Django’s killer feature.

"

-- Me

Good examples

- django-tagging (Jonathan Buchanan,
http: / /code.google.com/p/django-

tagging/)

- django-atompub (James Tauber, http: //
code.google.com/p/django-atompub /)

=» Search for “django” on code hosting sites

http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-tagging/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/
http://code.google.com/p/django-atompub/

More information

= django-hotclub (http: //
groups.qgoogle.com /qroup /django-
hotclub/)

- Jannis Leidel’s django-packages (http: //

code.google.com/p/django-
reusableapps/)

- Django Pluggables: http: //
djangoplugables.com/

http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://groups.google.com/group/django-hotclub/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://code.google.com/p/django-reusableapps/
http://djangoplugables.com
http://djangoplugables.com
http://djangoplugables.com
http://djangoplugables.com

Questions?

Photo credits

< "Purple Sparkly Pony Ride" by ninjapoodles, http: / /www.flickr.com /photos /ninjapoodles/
285048576/

< “Stonehenge #2" by severecci, http: / /www.flickr.com /photos /severecci /129553243 /

< “sookiepose” by 416style, http: / /www.flickr.com /photos/sookie /41561946 /

< "The Happy Couple" by galapogos, http: / /www.flickr.com /photos/galapogos /343592116 /

http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/ninjapoodles/285048576/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/severecci/129553243/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/sookie/41561946/
http://www.flickr.com/photos/galapogos/343592116/
http://www.flickr.com/photos/galapogos/343592116/

